Resumo
Neste trabalho discutimos a semissimplicidade de álgebras de Hopf finito-dimensionais e construímos o Duplo de Drinfeld D(H) de uma tal álgebra H. Além disso, apresentamos um resultado mostrando a equivalência entre as categorias de representações dos módulos sobre D(H) e dos módulos de Yetter-Drinfeld sobre Hcop. Como consequência deste estudo, apresentamos um resultado que caracteriza uma álgebra de Hopf quase triangular.
Abstract
In this work we discuss the semisimplicity of some finite-dimensional Hopf Algebras and we set up the Drinfel’d double D(H) of such an algebra H. In addiction, we present a result showing the equivalence between the representation category of modules over D(H) and the Yetter-Drinfeld modules over Hcop. As a consequence of this, we present a result that features a quasitriangular Hopf algebra.
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.