Resumo
Seja C uma curva quártica plana lisa sobre o corpo k = C, K seu corpo de funções racionais e P um ponto de C. Neste trabalho estudamos a extensão de corpos K/Kp gerada pela projeção πP : C ! P1. Calculamos seu fecho de Galois Lp e caracterizamos topologicamente o modelo não singular de Lp . No caso em que K/Kp é de Galois apresentamos equações que definem C. Estimamos também o número de pontos P da quártica tais que K/KP é de Galois.
Abstract
Let C be a smooth plane quartic curve over the field k = C, let K be its rational function field and let P be a point in C. In this work we study the field extension K/Kp generated by the projection πP : C ! P1. We calculate its Galois closure Lp and characterize topologically the smooth model of Lp . In the case where K/Kp is Galoisian we give defining equations for C. We estimate the number of points P of the quartic such that K/Lp is Galoisian.
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.