Asymptotic spectral analysis of growing graphs and orthogonal matrix-valued polynomials
Visualizar/abrir
Data
2016Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Resumo
Neste trabalho abordaremos a an alise espectral de grafos por dois estudos: técnicas de probabilidade quântica e por polinômios ortogonais com valores em matrizes. No Capítulo 1, consideraremos a matriz de adjacência do grafo tal como um operador linear e sua decomposição quântica permitir a uma an alise espectral que produzir a um teorema do limite central para tal grafo. No Capítulo 2, consideraremos uma medida com valores em matrizes induzida por polinômios ortogonais com valores em matrizes ...
Neste trabalho abordaremos a an alise espectral de grafos por dois estudos: técnicas de probabilidade quântica e por polinômios ortogonais com valores em matrizes. No Capítulo 1, consideraremos a matriz de adjacência do grafo tal como um operador linear e sua decomposição quântica permitir a uma an alise espectral que produzir a um teorema do limite central para tal grafo. No Capítulo 2, consideraremos uma medida com valores em matrizes induzida por polinômios ortogonais com valores em matrizes. Sob certas condições, e possível exibir explicitamente uma expressão de tal medida. Algumas aplicações em teoria dos grafos são dadas quando nos restringimos as matrizes estoc asticas e com valores em 0-1. Do nosso conhecimento, os cálculos e exemplos obtidos nas seçõoes 0.3.2, 0.3.3, 2.4 e 2.5 são novos. ...
Abstract
In this work we focus on the spectral analysis of graphs via two studies: quantum probabilistic techniques and by orthogonal matrix-valued polynomials. In Chapter 1 we consider the adjacency matrix of a graph as a linear operator, and its quantum decomposition will allow a spectral analysis that will produce a central limit theorem for such graph. In Chapter 2, we consider a matrix-valued measure induced by orthogonal matrix-valued polynomials. Under certain conditions, it is possible to displa ...
In this work we focus on the spectral analysis of graphs via two studies: quantum probabilistic techniques and by orthogonal matrix-valued polynomials. In Chapter 1 we consider the adjacency matrix of a graph as a linear operator, and its quantum decomposition will allow a spectral analysis that will produce a central limit theorem for such graph. In Chapter 2, we consider a matrix-valued measure induced by orthogonal matrix-valued polynomials. Under certain conditions, it is possible to display an explicit expression for such measure. Some applications to combinatorics and graph theory are given when we restrict to the stochastic and 0-1 matrices. Up to our knowledge, the calculations and examples obtained in sections 0.3.2, 0.3.3, 2.4 and 2.5 are new. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática e Estatística. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5129)Matemática (366)
Este item está licenciado na Creative Commons License