Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds
Visualizar/abrir
Data
2015Autor
Orientador
Nível acadêmico
Doutorado
Tipo
Assunto
Resumo
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráfic ...
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. ...
Abstract
We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on ...
We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5129)Matemática (366)
Este item está licenciado na Creative Commons License