Contribuições para o uso de regularização em técnicas de identificação de sistemas
Visualizar/abrir
Data
2023Autor
Orientador
Nível acadêmico
Doutorado
Tipo
Assunto
Resumo
A partir de trabalhos recentes e inovadores da área de aprendizado de máquina, uma ferramenta matemática conhecida como regularização ganhou notoriedade para o contexto de identificação de sistemas, principalmente devido a novas metodologias para a estimação da matriz de regularização, relacionadas a informações a priori sobre o sistema, e a resultados promissores exibidos em trabalhos que empregam tal ferramenta, os quais atingem modelos mais precisos comparados às técnicas clássicas de identi ...
A partir de trabalhos recentes e inovadores da área de aprendizado de máquina, uma ferramenta matemática conhecida como regularização ganhou notoriedade para o contexto de identificação de sistemas, principalmente devido a novas metodologias para a estimação da matriz de regularização, relacionadas a informações a priori sobre o sistema, e a resultados promissores exibidos em trabalhos que empregam tal ferramenta, os quais atingem modelos mais precisos comparados às técnicas clássicas de identificação. Neste sentido, este trabalho apresenta contribuições que exploram o uso dessa ferramenta de regularização para estender técnicas de identificação de sistemas com ruído colorido na saída, identificação de sistemas com erros nas variáveis e controle baseado em dados. No âmbito de identificação de sistemas com ruído colorido na saída, este trabalho apresenta o método dos mínimos quadrados ponderados regularizados, assim como a dedução de matrizes ótimas de regularização e ponderação para este cenário. No contexto de identificação com erros nas variáveis, o trabalho apresenta uma análise de propriedades estatísticas da técnica de estimação por variáveis instrumentais e usa a ferramenta de regularização para minimizar um critério relacionado ao erro médio quadrático das estimativas. No contexto de controle baseado em dados, o desenvolvimento para sistemas com erros nas variáveis é estendido para o método da referência virtual, com as particularidades e interpretações voltadas para controle. ...
Abstract
Due to recent and innovative papers from the machine learning area, a mathematical tool known as regularization earned notoriety also for the system identification context, especially due to new methodologies to estimate the regularization matrix, which are related to a priori information, and promising results demonstrated on works that use this tool. In this scenario, this work presents contributions that explore the use of the regularization tool to extend methods for identification of syste ...
Due to recent and innovative papers from the machine learning area, a mathematical tool known as regularization earned notoriety also for the system identification context, especially due to new methodologies to estimate the regularization matrix, which are related to a priori information, and promising results demonstrated on works that use this tool. In this scenario, this work presents contributions that explore the use of the regularization tool to extend methods for identification of systems with colored output noise, for errors-in-varibles system identification and for one data-driven control method. Regarding the identification of systems with colored output noise, this work introduces the regularized weighted least-squares method, as well as the computation of the optimal weighting and regularization matrices. In the errors-in-variables system identification scenario, this work presents the statistical properties analysis of the regularized version of the instrumental variable method and it also presents the optimization of the mean square error by using regularization. Finally, regarding the data-driven control contribution, this work extends the errors-in-variables results to the Virtual Reference Feedback Tuning method, according to its characteristics and interpretations that are considered for control. ...
Instituição
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Elétrica.
Coleções
-
Engenharias (7477)Engenharia Elétrica (469)
Este item está licenciado na Creative Commons License