Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos
Visualizar/abrir
Data
1994Orientador
Co-orientador
Nível acadêmico
Doutorado
Tipo
Outro título
Algebraic algorithms for enumerate and isolate complex polynomial zeros
Assunto
Resumo
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região d ...
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. ...
Abstract
In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified W ...
In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Informática. Curso de Pós-Graduação em Ciência da Computação.
Coleções
-
Ciências Exatas e da Terra (5141)Computação (1766)
Este item está licenciado na Creative Commons License