Evaluation of deep learning methods in a dual prediction scheme to reduce transmission data in a WSN
Visualizar/abrir
Data
2021Autor
Tipo
Assunto
Abstract
One of the most important challenges in Wireless Sensor Networks (WSN) is the extension of the sensors lifetime, which are battery-powered devices, through a reduction in energy consumption. Using data prediction to decrease the amount of transmitted data is one of the approaches to solve this problem. This paper provides a comparison of deep learning methods in a dual prediction scheme to reduce transmission. The structures of the models are presented along with their parameters. A comparison ...
One of the most important challenges in Wireless Sensor Networks (WSN) is the extension of the sensors lifetime, which are battery-powered devices, through a reduction in energy consumption. Using data prediction to decrease the amount of transmitted data is one of the approaches to solve this problem. This paper provides a comparison of deep learning methods in a dual prediction scheme to reduce transmission. The structures of the models are presented along with their parameters. A comparison of the models is provided using different performance metrics, together with the percent of points transmitted per threshold, and the errors between the final data received by Base Station (BS) and the measured values. The results show that the model with better performance in the dataset was the model with Attention, saving a considerable amount of data in transmission and still maintaining a good representation of the measured data. ...
Contido em
Sensors [recurso eletrônico]. [Basel, Switzerland]. vol. 21, no. 21 (Nov. 2021), article 7375, 23 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (40304)Engenharias (2437)
Este item está licenciado na Creative Commons License