Se In é um ideal finitamente gerado então I é um ideal finitamente gerado?
Visualizar/abrir
Data
2001Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Resumo
Suponhamos que M seja um ideal maximal de um domínio R e que alguma potência de M seja finitamente gerada. Vamos mostrar que M será finitamente gerado em cada um dos seguintes casos: i M tem altura um, ii R é inteiramente fechado e altura de M é 2, iii R K X,S é um domínio monóide sobre um corpo K, onde S S 0 é um monóide cancelativo e livre de torção, tal que i 1 iS e M é o ideal maximal gerado por Xs/s S . Estendemos os resultados anteriores aos ideais I de um anel reduzido R tal que RI é ane ...
Suponhamos que M seja um ideal maximal de um domínio R e que alguma potência de M seja finitamente gerada. Vamos mostrar que M será finitamente gerado em cada um dos seguintes casos: i M tem altura um, ii R é inteiramente fechado e altura de M é 2, iii R K X,S é um domínio monóide sobre um corpo K, onde S S 0 é um monóide cancelativo e livre de torção, tal que i 1 iS e M é o ideal maximal gerado por Xs/s S . Estendemos os resultados anteriores aos ideais I de um anel reduzido R tal que RI é anel Noetheriano. Provamos que um anel reduzido R é Noetheriano se cada ideal primo de R possui uma potência que é finitamente gerada. Para cada d tal que 3 d , estabelecemos a existência de um domínio de integridade d-dimensional que possui um ideal maximal M não finitamente gerado, de altura d tal que M2 é 3-gerado. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5141)Matemática (366)
Este item está licenciado na Creative Commons License