A multivariate analysis framework to detect key environmental factors affecting spatiotemporal variability of chlorophyll-a in a tropical productive estuarine-lagoon system

View/ Open
Date
2018Author
Type
Subject
Abstract
Here, we demonstrate how a combination of three multivariate statistic techniques can identify key environmental factors affecting the seasonal and spatial variability of chlorophyll-a (Chl-a) in a productive tropical estuarine-lagoon system. Remote estimation of Chl-a was carried out using a NIR-Red model based on MODIS bands, which is highly consistent with the in situ measurement of Chl-a with root mean square error (RMSE) of 15.24 mg m3 and 13.43 mg m3 for two independent datasets used ...
Here, we demonstrate how a combination of three multivariate statistic techniques can identify key environmental factors affecting the seasonal and spatial variability of chlorophyll-a (Chl-a) in a productive tropical estuarine-lagoon system. Remote estimation of Chl-a was carried out using a NIR-Red model based on MODIS bands, which is highly consistent with the in situ measurement of Chl-a with root mean square error (RMSE) of 15.24 mg m3 and 13.43 mg m3 for two independent datasets used for the model’s calibration and validation, respectively. Our findings suggest that the river discharges and hydraulic residence time of the lagoons promote a stronger effect on the spatial variability of Chl-a in the coastal lagoons, while wind, solar radiation and temperature have a secondary importance. The results also indicate a slight seasonal variability of Chl-a in Mundaú lagoon, which are different the from Manguaba lagoon. The multivariate approach was able to fully understand the relative importance of key environmental factors on the spatiotemporal variability of Chl-a of the aquatic ecosystem, providing a powerful tool for reducing dimensionality and analyzing large amounts of satellite-derived Chl-a data. ...
In
Remote Sensing. Basel. Vol. 10, n. 6 (2018), 17 p.
Source
Foreign
Collections
-
Journal Articles (37147)Engineering (2272)
This item is licensed under a Creative Commons License
