Modelagem matemática do espalhamento do poluente mercúrio na água
Visualizar/abrir
Data
2017Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas ...
O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas centrais, gerando sistemas lineares que foram resolvidos pelo método de Gauss-Seidel e a convergência foi acelerada usando a técnica de sobre-relaxações SOR. A an alise da consistência e estabilidade da equação de concentração foi feita. Além disso, a solução analítica da equação de concentração, que e uma equação diferencial parcial bidimensional não homogênea com uma condição de contorno não homogênea, foi obtida com a transformada de Laplace. Os resultados obtidos a partir do modelo numérico e da solução analítica foram comparados e apresentam concordância razoável. ...
Abstract
The goal of this work is the mathematical modeling of the spreading of the polluting mercury in the water. The two-dimensional model consists of water drainage through a canal, where the pollutant (mercury) enters. The model consists of a set of partial di erential equations: the equations for the conservation of the mass, the momentum, and the concentration of the species, subject to appropriate initial and boundary conditions. These equations were discretized by the method of central nite di ...
The goal of this work is the mathematical modeling of the spreading of the polluting mercury in the water. The two-dimensional model consists of water drainage through a canal, where the pollutant (mercury) enters. The model consists of a set of partial di erential equations: the equations for the conservation of the mass, the momentum, and the concentration of the species, subject to appropriate initial and boundary conditions. These equations were discretized by the method of central nite di erences, generating linear systems, which were solved by the Gauss-Seidel method and convergence was accelerated using the over-relaxation SOR technique. The analysis of the consistency and stability of the concentration equation was made. Furthermore, the analytical solution of the concentration equation, which is a two-dimensional non-homogeneous partial di erential equation with one nonhomogeneous contour condition, was obtained using Laplace transform. The results obtained from the numerical model and the analytical solution were compared and presented reasonable agreement. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática e Estatística. Programa de Pós-Graduação em Matemática Aplicada.
Coleções
-
Ciências Exatas e da Terra (5143)Matemática Aplicada (285)
Este item está licenciado na Creative Commons License