Formulação variacional da equação de Grad-Shafranov
View/ Open
Date
1993Author
Academic level
Master
Type
Abstract in Portuguese (Brasil)
Neste trabalho estudamos uma formulação variacional para a equação de Grad-Shafranov em um conjunto aberto e limitado n c IR. n . Primeiro estabelecemos a relação entre a formulação variacional e a equação original. A seguir, conforme o trabalho de P. Laurence e W. Stredulinsky, provamos que o funcional desta formulação possui um mínimo (supostamente a solução do problema original) e que este possui algumas propriedades de regularidade. Estudamos então o problema quando o domínio n for convexo. ...
Neste trabalho estudamos uma formulação variacional para a equação de Grad-Shafranov em um conjunto aberto e limitado n c IR. n . Primeiro estabelecemos a relação entre a formulação variacional e a equação original. A seguir, conforme o trabalho de P. Laurence e W. Stredulinsky, provamos que o funcional desta formulação possui um mínimo (supostamente a solução do problema original) e que este possui algumas propriedades de regularidade. Estudamos então o problema quando o domínio n for convexo. Para este caso, apresentamos uma espécie de discretização devido aos mesmos autores. Estabelecemos ainda propriedades geométricas importantes para a solução do problema discretizado. ...
Abstract
In this work we study a variational formulation to the Grad-Shafranov equation in an open and bounded set n C 1R n. First we establish a relationship between the variational formulation anel the original equation. Then, according to P. Laurence and V. Stredulinsky we prove that the functional of this formulation attains a. minimum (supposedly the solution of the original problem) a.nd this minimum has some characteristics of regularity. For the case of n convex, we introduce a kind of discreti ...
In this work we study a variational formulation to the Grad-Shafranov equation in an open and bounded set n C 1R n. First we establish a relationship between the variational formulation anel the original equation. Then, according to P. Laurence and V. Stredulinsky we prove that the functional of this formulation attains a. minimum (supposedly the solution of the original problem) a.nd this minimum has some characteristics of regularity. For the case of n convex, we introduce a kind of discretisation due to the above mentioned authors. We finally establish some important geometric properties of the solution of the discretised problem. ...
Institution
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Curso de Pós-Graduação em Matemática.
Collections
-
Exact and Earth Sciences (5143)Mathematics (367)
This item is licensed under a Creative Commons License