Raciocínio probabilístico aplicado ao diagnóstico de insuficiência cardíaca congestiva (ICC)
Visualizar/abrir
Data
2003Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Outro título
Probabilistic reasoning applied to the diagnosis of heart failure
Assunto
Resumo
As Redes Bayesianas constituem um modelo computacional adequado para a realização de inferências probabilísticas em domínios que envolvem a incerteza. O raciocínio diagnóstico médico pode ser caracterizado como um ato de inferência probabilística em um domínio incerto, onde a elaboração de hipóteses diagnósticas é representada pela estratificação de doenças em função das probabilidades a elas associadas. A presente dissertação faz uma pesquisa sobre a metodologia para construção/validação de re ...
As Redes Bayesianas constituem um modelo computacional adequado para a realização de inferências probabilísticas em domínios que envolvem a incerteza. O raciocínio diagnóstico médico pode ser caracterizado como um ato de inferência probabilística em um domínio incerto, onde a elaboração de hipóteses diagnósticas é representada pela estratificação de doenças em função das probabilidades a elas associadas. A presente dissertação faz uma pesquisa sobre a metodologia para construção/validação de redes bayesianas voltadas à área médica, e utiliza estes conhecimentos para o desenvolvimento de uma rede probabilística para o auxílio diagnóstico da Insuficiência Cardíaca (IC). Esta rede bayesiana, implementada como parte do sistema SEAMED/AMPLIA, teria o papel de alerta para o diagnóstico e tratamento precoce da IC, o que proporcionaria uma maior agilidade e eficiência no atendimento de pacientes portadores desta patologia. ...
Abstract
Bayesian networks (BN) constitute an adequate computational model to make probabilistic inference in domains that involve uncertainty. Medical diagnostic reasoning may be characterized as an act of probabilistic inference in an uncertain domain, where diagnostic hypotheses elaboration is represented by the stratification of diseases according to the related probabilities. The present dissertation researches the methodology used in the construction/validation of Bayesian Networks related to the ...
Bayesian networks (BN) constitute an adequate computational model to make probabilistic inference in domains that involve uncertainty. Medical diagnostic reasoning may be characterized as an act of probabilistic inference in an uncertain domain, where diagnostic hypotheses elaboration is represented by the stratification of diseases according to the related probabilities. The present dissertation researches the methodology used in the construction/validation of Bayesian Networks related to the medical field, and makes use of this knowledge for the development of a probabilistic network to aid in the diagnosis of Heart Failure (HF). This BN, implemented as part of the SEAMED/AMPLIA System, would engage in the role of alerting for early diagnosis and treatment of HF, which could provide faster and more efficient healthcare of patients carrying this pathology. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Computação.
Coleções
-
Ciências Exatas e da Terra (5129)Computação (1764)
Este item está licenciado na Creative Commons License