Mostrar registro simples

dc.contributor.advisorFontana, Denise Cybispt_BR
dc.contributor.authorMengue, Vagner Pazpt_BR
dc.date.accessioned2014-02-28T01:50:54Zpt_BR
dc.date.issued2013pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/87991pt_BR
dc.description.abstractUma das atividades mais relevantes para a economia brasileira é a agricultura. Entre os produtos de maior importância no cenário agrícola nacional, estão a soja e o arroz, os quais representam uma grande parcela da produção. Somente o Estado do Rio Grande do Sul é responsável por aproximadamente 67% da produção nacional de arroz e 10% de soja (IBGE, 2012). Portanto, informações confiáveis sobre a produção agrícola são relevantes para o desenvolvimento do setor e o desenvolvimento de metodologias capazes de auxiliar no monitoramento das áreas agrícolas torna-se peça importante na geração de dados confiáveis e com maior rapidez de obtenção. Desta forma, o objetivo deste trabalho foi desenvolver uma metodologia de baixo custo para a execução do mapeamento da área cultivada de arroz irrigado e soja, em escala municipal e estadual, baseado na análise do comportamento espectro-temporal de índices de vegetação de imagens de satélite de alta resolução temporal. O estudo foi realizado no Estado do Rio Grande do Sul, abrangendo os 497 municípios no ano safra 2011/2012. Para realizar o estudo, foram utilizadas imagens multitemporais do sensor MODIS, índices de vegetação EVI e NDVI. Foi aplicado o modelo HAND para gerar as áreas de inundação, as quais foram utilizadas para discriminar a cultura do arroz irrigado de outras culturas, especialmente a soja. Para avaliar os resultados foram utilizados como dados de referência, os dados coletados a campo, dados de área cultivada do IBGE e dados do mapeamento gerados a partir de imagens do satélite RapidEye. Os resultados mostraram que a metodologia proposta foi satisfatória, com valores médios do índice Kappa de 0,90 para a cultura de arroz irrigado e de 0,84 para a soja. Não houve diferença significativa entre as estimativas de área cultivada utilizando os dados EVI e NDVI para ambas as culturas. A utilização do Modelo HAND para discriminar o arroz irrigado de outros cultivos, mostrou-se muito eficiente, separando as áreas de várzea, que são mais aptas para o cultivo de arroz irrigado. Apesar dos resultados terem sido considerados como satisfatórios alguns municípios apresentaram problemas de subestimação ou superestimação quando foram comparados com os dados oficiais do IBGE. Esses problemas podem estar relacionados ao caráter subjetivo de aquisição de dados por parte do IBGE e também o fato de ter sido utilizada para a validação dos dados da safra 2011/2012 a média das últimas três safras, podendo desta maneira ter fragilizado ou comprometido os resultados para alguns municípios. Portanto, técnicas de sensoriamento remoto e geoprocessamento podem ser úteis no auxilio dos atuais métodos de monitoramento e mapeamento de culturas agrícolas, melhorando as estatísticas oficiais do arroz irrigado e soja.pt
dc.description.abstractOne of the most relevant activities for the Brazilian economy is agriculture. Among the products of greatest importance in the national agricultural, are soybeans and rice, which represent a large portion of the production. Only the State of Rio Grande do Sul is responsible for approximately 67% of the national rice production and 10% of soybean (IBGE, 2012). Therefore, reliable information on agricultural production are relevant to the development of the sector and the development of methodologies capable of assist in the monitoring of agricultural areas becomes important part in the generation of reliable data and faster of obtaining. Thus, the objective of this work was to develop a methodology of low cost to implement the mapping of acreage irrigated rice and soybeans, at the municipal and state levels, based on the analysis of the spectral-temporal behavior of vegetation indices from satellite images high temporal resolution. The study was conducted in the state of Rio Grande do Sul, covering 497 municipalities in crop year 2011/2012. To conduct the study, images were used multitemporal MODIS vegetation indices EVI and NDVI. HAND model was applied to generate the inundation areas, which were used to discriminate the rice culture of other crops, especially soybeans. To evaluate the results were used as reference data, data collected in the field, the cultivated area data from the IBGE and mapping data generated from satellite images RapidEye. The results show that the proposed method was satisfactory, with mean values of Kappa 0.90 for irrigated rice and 0.84 for soybeans. There was no significant difference between the estimates of acreage using EVI and NDVI data for both crops. The use of the HAND model to discriminate irrigated rice from other crops, was very efficient, separating the lowland areas, which are more suitable for the cultivation of irrigated rice. Although the results were considered satisfactory as some municipalities had problems underestimation or overestimation when they were compared with the official data. These problems may be related to the subjective nature of data acquisition by the IBGE and the fact of having been used for the validation of data from 2011/2012 season the average of the last three years, and may in this way be weakened or compromised results for some municipalities. Therefore, techniques of remote sensing and GIS can be useful in the aid of the current methods of monitoring and mapping of agricultural crops, improving the official statistics of irrigated rice and soybeans.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectImage MODIS EVI/NDVIen
dc.subjectPrevisao de safrapt_BR
dc.subjectArroz irrigadopt_BR
dc.subjectHAND modelen
dc.subjectSojapt_BR
dc.subjectRemote sensingen
dc.subjectModerate Resolution Imaging Spectroradiometer (MODIS)pt_BR
dc.subjectCrop forecastingen
dc.subjectMapeamento ambientalpt_BR
dc.titleAvaliação da dinâmica espectro-temporal visando o mapeamento da soja e arroz irrigado no Rio Grande do Sulpt_BR
dc.title.alternativeEvaluation of dynamic spectral-temporal targeting mapping of soybean and irrigated rice in Rio Grande do Sul en
dc.typeDissertaçãopt_BR
dc.identifier.nrb000912244pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentCentro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologiapt_BR
dc.degree.programPrograma de Pós-Graduação em Sensoriamento Remotopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2013pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples