Show simple item record

dc.contributor.advisorSilva Junior, Edson Prestes ept_BR
dc.contributor.authorMaffei, Renan de Queirozpt_BR
dc.date.accessioned2013-11-15T01:47:08Zpt_BR
dc.date.issued2013pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/80521pt_BR
dc.description.abstractSimultaneous Localization and Mapping (SLAM) is one of the most difficult tasks in mobile robotics, since there is a mutual dependency between the estimation of the robot pose and the construction of the environment map. Most successful strategies in SLAM focus in building a probabilistic metric map employing Bayesian filtering techniques. While these methods allow the construction of consistent and coherent local solutions, the SLAM remains a critical problem in operations within large environments. To circumvent this limitation, many strategies divide the environment in small regions, and formulate the SLAM problem as a combination of multiple precise metric submaps associated in a topological map. This work proposes a SLAM method based on the Distributed Particle SLAM (DPSLAM) and the Segmented SLAM (SegSLAM) algorithms. SegSLAM is an algorithm that generates multiple submaps for every region of the environment, and then build the global map by selecting combinations of submaps. DP-SLAM is a Rao-Blackwellized particle filter algorithm that uses an efficient distributed representation of the particles maps associated with an ancestry tree of the particles. The distributed characteristic of these structures favors the combination of locally accurate map segments, that can increase the diversity of global level solutions. The algorithm proposed in this dissertation, called SDP-SLAM, segments and combines different hypotheses of robot trajectories to reconstruct the environment map. Our main contributions are the development of novel strategies for the matching of submaps and for the estimation of good submaps combinations. SDP-SLAM was evaluated through experiments performed by a mobile robot operating in real and simulated environments.en
dc.description.abstractLocalização e Mapeamento Simultâneos (SLAM) é uma das tarefas mais difíceis em robótica móvel, uma vez que existe uma dependência mútua entre a estimativa da localização do robô e a construção do mapa de ambiente. As estratégias de SLAM mais bem sucedidas focam na construção de um mapa métrico probabilístico empregando técnicas de filtragem Bayesiana. Embora tais métodos permitam a construção de soluções localmente consistentes e coerentes, o SLAM continua sendo um problema crítico em operações em ambientes grandes. Para contornar esta limitação, muitas estratégias dividem o ambiente em pequenas regiões, e formulam o problema de SLAM como uma combinação de múltiplos submapas métricos precisos associados em um mapa topológico. Este trabalho propõe um método de SLAM baseado nos algoritmos DP-SLAM (Distributed Particle SLAM) e SegSlam (Segmented SLAM). SegSLAM é um algoritmo que cria múltiplos submapas para cada região do ambiente, e posteriormente constrói o mapa global selecionando combinações de submapas. Por sua vez, DP-SLAM é um algoritmo de filtro de particulas Rao-Blackwellized que utiliza uma representação distribuída eficiente dos mapas das partículas, juntamente com a árvore de ascendência das partículas. A característica distribuída destas estruturas é favorável para a combinação de diferentes segmentos de mapa localmente precisos, o que aumenta a diversidade de soluções. O algoritmo proposto nesta dissertação, chamado SDP-SLAM, segmenta e combina diferentes hipóteses de trajetórias do robô, a fim de reconstruir o mapa do ambiente. Nossas principais contribuições são o desenvolvimento de novas estratégias para o casamento de submapas e para a estimativa de boas combinações de submapas. O SDP-SLAM foi avaliado através de experimentos realizados por um robô móvel operando em ambientes reais e simulados.pt_BR
dc.format.mimetypeapplication/pdf
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectSLAMen
dc.subjectInteligência artificialpt_BR
dc.subjectRobóticapt_BR
dc.subjectRao-blackWellized particle filteren
dc.subjectSubmap-based SLAMen
dc.titleSegmented DP-SLAMpt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb000902766pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2013pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record