Mostrar registro simples

dc.contributor.advisorBarone, Dante Augusto Coutopt_BR
dc.contributor.authorAstiazara, Mauricio Volkweispt_BR
dc.date.accessioned2012-09-01T01:37:15Zpt_BR
dc.date.issued2012pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/54863pt_BR
dc.description.abstractNeste trabalho é analisada a aplicação da técnica de Sistemas Imunológicos Artificiais (SIA) a um problema do mundo real: como predizer fraudes e furtos de energia elétrica. Vários trabalhos tem mostrado que épossível detectar padrões de dados anormais a partir dos dados de consumidores de energia elétrica e descobrir problemas como fraude e furto. Sistemas Imunológicos Artificiais é um ramo recente da Inteligência Computacional e tem diversas possíveis aplicações, sendo uma delas o reconhecimento de padrões. Mais de um algoritmo pode ser empregado para criar um SIA; no escopo deste trabalho será empregado o algoritmo Clonalg. A eficácia deste algoritmo é medida e comparada com a de outros métodos de classificação. A amostra de dados usada para validar este trabalho foi fornecida por uma companhia de energia elétrica. Os dados fornecidos foram selecionados e transformados com o objetivo de eliminar redundância e normalizar valores.pt_BR
dc.description.abstractIn this paper, we analyze the application of an Artificial Immune System (AIS) to a real world problem: how to predict electricity fraud and theft. Various works have explained that it is possible to detect abnormal data patterns from electricity consumers and discover problems like fraud and theft. Artificial Immune Systems is a recent branch of Computational Intelligence and has several possible applications, one of which is pattern recognition. More than one algorithm can be employed to create an AIS; we selected the Clonalg algorithm for our analysis. The efficiency of this algorithm is measured and compared with that of other classifier methods. The data sample used to validate this work was provided by an electrical energy company. The provided data were selected and transformed with the aim of eliminating redundant data and to normalize values.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectInteligência artificialpt_BR
dc.subjectArtificial immune systemsen
dc.subjectReconhecimento : Padroespt_BR
dc.subjectClassifiersen
dc.subjectPattern recognitionen
dc.subjectFraud detectionen
dc.titleSistema imunológico artificial para predição de fraudes e furtos de energia elétricapt_BR
dc.title.alternativeArtificial immune system to predict electrical energy fraud and theft en
dc.typeDissertaçãopt_BR
dc.identifier.nrb000856516pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2012pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples