Show simple item record

dc.contributor.advisorMoreira, Viviane Pereirapt_BR
dc.contributor.authorVolpe, Isabel Cristinapt_BR
dc.date.accessioned2011-10-12T01:18:14Zpt_BR
dc.date.issued2011pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/32858pt_BR
dc.description.abstractUma das principais tarefas de Recuperação de Informações é encontrar documentos que sejam relevantes a uma consulta. Esta tarefa é difícil porque, em muitos casos os termos de busca escolhidos pelo usuário são diferentes dos termos utilizados pelos autores dos documentos. Ao longo dos anos, várias abordagens foram propostas para lidar com este problema. Uma das técnicas mais utilizadas, com o objetivo de expandir o número de documentos relevantes recuperados é a Expansão de Consultas, que consiste em expandir a consulta com a adição de termos relacionados. Este trabalho propõe um método que utiliza o modelo de Cell Assemblies para a expansão da consulta. Cell Assemblies são grupos de neurônios conectados, com padrões de disparo, que permitem que a atividade persista mesmo após a remoção dos estímulos externos. A modificação das sinapses entre os neurônios é feita através de regras de aprendizagem Hebbiana. Neste trabalho, o modelo Cell Assemblies foi adaptado a fim de aprender os relacionamentos entre os termos de uma coleção de documentos. Esses relacionamentos são utilizados para expandir a consulta original com termos relacionados. A avaliação experimental sobre uma coleção de testes padrão em Recuperação de Informações mostrou que algumas consultas melhoraram significativamente seus resultados com a técnica proposta.pt_BR
dc.description.abstractOne of the main tasks in Information Retrieval is to match a user query to the documents that are relevant for it. This matching is challenging because in many cases the keywords the user chooses will be different from the words the authors of the relevant documents have used. Throughout the years, many approaches have been proposed to deal with this problem. One of the most popular consists in expanding the query with related terms with the goal of retrieving more relevant documents. In this work, we propose a new method in which a Cell Assembly model is applied for query expansion. Cell Assemblies are reverberating circuits of neurons that can persist long beyond the initial stimulus has ceased. They learn through Hebbian Learning rules and have been used to simulate the formation and the usage of human concepts. We adapted the Cell Assembly model to learn relationships between the terms in a document collection. These relationships are then used to augment the original queries. Our experiments use standard Information Retrieval test collections and show that some queries significantly improved their results with the proposed technique.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectRecuperacao : Informacaopt_BR
dc.subjectQuery expansionen
dc.subjectInformation retrievalen
dc.subjectRedes neuraispt_BR
dc.subjectNeural networksen
dc.subjectHebbian learningen
dc.titleCell assemblies para expansão de consultaspt_BR
dc.title.alternativeCell assemblies for query expansion en
dc.typeDissertaçãopt_BR
dc.identifier.nrb000788069pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2011pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record