Mostrar registro simples

dc.contributor.authorSteiner, Heidi E.pt_BR
dc.contributor.authorGiles, Jason B.pt_BR
dc.contributor.authorPatterson, Hayley Knightpt_BR
dc.contributor.authorFeng, Jianglinpt_BR
dc.contributor.authorRouby, Nihal Elpt_BR
dc.contributor.authorClaudio, Karlapt_BR
dc.contributor.authorMarcatto, Leiliane Rodriguespt_BR
dc.contributor.authorTavares, Leticia Camargopt_BR
dc.contributor.authorGálvez, Jubby Marcelapt_BR
dc.contributor.authorCalderon Ospina, Carlos Albertopt_BR
dc.contributor.authorSun, Xiaoxiaopt_BR
dc.contributor.authorHutz, Mara Helenapt_BR
dc.contributor.authorScott, Stuart A.pt_BR
dc.contributor.authorCavallari, Larisa H.pt_BR
dc.contributor.authorFonseca Mendoza, Dora Janethpt_BR
dc.contributor.authorDuconge, Jorgept_BR
dc.contributor.authorBotton, Mariana Rodriguespt_BR
dc.contributor.authorSantos, Paulo Caleb Junior Limapt_BR
dc.contributor.authorKarnes, Jason H.pt_BR
dc.date.accessioned2024-11-19T06:45:18Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.issn1663-9812pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/281302pt_BR
dc.description.abstractPopulations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry. We compare the accuracy of stable warfarin dose prediction using linear and nonlinear machine learning models in a large cohort enriched for US Latinos and Latin Americans (ULLA). Each model was tested using the same variables as published by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded set of variables including ethnicity and warfarin indication. We utilized a multiple linear regression model and three nonlinear regression models: Bayesian Additive Regression Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We compared each model’s ability to predict stable warfarin dose within 20% of actual stable dose, confirming trained models in a 30% testing dataset with 100 rounds of resampling. In all patients (n = 7,030), inclusion of additional predictor variables led to a small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8 versus 46.7% in IWPC, p = 1.43 × 10−15). Nonlinear models using IWPC variables did not significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients alone (n = 1,734), IWPC performed similarly to all other linear and nonlinear pharmacogenetic algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population and suggest that additional variables that capture warfarin dose variability may improve warfarin dose prediction algorithms.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofFrontiers in pharmacology. Lausanne. Vol. 12 (Oct. 2021), 749786, 13 p.pt_BR
dc.rightsOpen Accessen
dc.subjectFarmacogenéticapt_BR
dc.subjectPharmacogeneticsen
dc.subjectMachine learningen
dc.subjectAprendizado de máquinapt_BR
dc.subjectAnticoagulanten
dc.subjectAnticoagulantespt_BR
dc.subjectWarfarinen
dc.subjectVarfarinapt_BR
dc.subjectHispânico ou latinopt_BR
dc.subjectLatinoen
dc.subjectHispanicen
dc.titleMachine learning for prediction of stable warfarin dose in US Latinos and Latin Americanspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001210221pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples