Show simple item record

dc.contributor.advisorStreit, Líviapt_BR
dc.contributor.authorAlves, Marcelo Siqueirapt_BR
dc.date.accessioned2024-04-18T05:36:53Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/274920pt_BR
dc.description.abstractPara avaliar a atividade biológica de moléculas, três tipos de experimentos podem ser utilizados: in vivo (por exemplo, testes em animais); in vitro (por exemplo, cultura de tecido celular); e simulações in silico. Experimentos in vivo e in vitro são processos demorados e caros, além de gerar discussões e debates éticos. Uma alternativa para evitar esses contratempos é a utilização de modelos in silico. A comunidade científica passa assim a utilizar os modelos in silico como uma possível alternativa, desenvolvendo muitos modelos e estratégias capazes de prever as propriedades toxicológicas de diversos compostos químicos. Constantemente temos que lidar com um aumento exponencial na quantidade de diferentes compostos químicos que as indústrias sintetizam e fabricam, como remédios, agrotóxicos, poluentes orgânicos persistentes, conservantes e produtos de higiene pessoal. Muitas dessas substâncias químicas são biologicamente ativas e interagem com biomoléculas, como as proteínas, por meio de mecanismos específicos que levam a diferentes respostas biológicas. Devido ao risco inerente de muitos compostos ao meio ambiente e aos seres humanos, suas atividades toxicológicas devem ser avaliadas. Esta dissertação discute os resultados obtidos para predições de atividade toxicológica, incluindo carcinogenicidade, mutagenicidade, toxicidade na reprodução, biodegradabilidade imediata, persistência, fator de bioconcentração, toxicidade e disrupção endócrina de 105 moléculas de fármacos, agrotóxicos, e seus metabólitos, que foram determinados na água do Lago Guaíba, localizado na Região Metropolitana de Porto Alegre, no Rio Grande do Sul. As análises foram realizadas por cromatografia líquida acoplada a espectrômetro de massas de alta resolução (LC-qTOF-MS), e cromatografia gasosa acoplada a espectrômetro de massas (GC-MS/MS). Para tanto, foram utilizados modelos in silico de Relação Estrutura-Atividade Quantitativa (QSAR) implementados nas plataformas VEGA e Janus. Os diferentes modelos foram avaliados quanto à confiabilidade das predições através dos índices de domínio de aplicabilidade, similaridade, concordância, precisão, fragmentos centrados no átomo e intervalo de descritores. Os resultados obtidos permitem concluir que a utilização dos modelos in silico para predição de toxicidade de compostos mostrou-se confiável, com a possibilidade de comparar os modelos disponíveis, frente a diferentes índices, como os de domínio de aplicabilidade e similaridade, que possibilitam direcionar os melhores modelos de predição.pt_BR
dc.description.abstractIn order to evaluate the biological activity of molecules, three types of experiments can be used: in vivo (e.g., animal tests); in vitro (e.g., cell tissue culture); and in silico simulations. In vivo and in vitro experiments are time consuming and expensive processes and may cause ethical discussions and debates. An alternative to avoid these setbacks is t o use in silico models. The scientific community thus begins to use in silico models as a possible alternative, developing many models and strategies capable of predicting the toxicological properties of several chemical compounds. We c onstantly must deal with an exponential increase in the amount of different chemical compounds that industries synthesize and manu facture, such as drugs, pesticides, persistent organic pollutants, preservatives, and personal hygiene products. Many of these chemical substances are biologically active and interact with biomolecules, such as proteins, through specific mechanisms that le ad to different biological responses. Due to the inherent risk of many compounds to both environment and to humans, their toxicological activities must be evaluated. This thesis discusses the results obtained for predictions of toxicological activity, including carcinogenicity, mutagenicity, reproductive toxicity, immediate biodegradability, persistence, bioconcentration factor, toxicity and endocrine disruption of 105 drug s , pesticides, and their metabolites found in Lake Guaíba, located in the Metropolitan Region of Porto Alegre, Rio Grande do Sul, through liquid chromatography coupled to a high resolution mass spectrometer (LC qTOF MS), and gas chromatography coupled to a mass spectrometer (GC MS/MS). To this end, in silico QSAR models implemented on the VEGA and Janus platforms were used. The different models were evaluated according to the reliability of predictions through applicability domain indexes, similarity, agreement, precision, atom centered fragments and descriptor range. The result s allow us to conclude that in silico models to predict the toxicity of compounds proved to be reliable, with the possibility of comparing the available models, with different ind exes , such as those of applicability and similarity domains, which allow the selection of the best prediction models.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectIn silico modelsen
dc.subjectToxicidadept_BR
dc.subjectRelação estrutura-atividadept_BR
dc.subjectToxicityen
dc.subjectAgrotóxicospt_BR
dc.subjectQuantitative structure activity relationship endpointen
dc.titleAplicação de modelos in silico para avaliação da toxicidade de resíduos de agrotóxicos, fármacos e seus metabólitospt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor-coPizzolato, Tania Marapt_BR
dc.identifier.nrb001199846pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Químicapt_BR
dc.degree.programPrograma de Pós-Graduação em Químicapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2024pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record