Mostrar registro simples

dc.contributor.advisorMüller, Ivanpt_BR
dc.contributor.authorRadke, Leomar Mateuspt_BR
dc.date.accessioned2023-02-07T05:02:10Zpt_BR
dc.date.issued2022pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/254243pt_BR
dc.description.abstractO avanço das aplicações com Internet of Things (IoT), no contexto de redes de longa distância de baixa potência nos dias atuais é notório. Porém, algumas fragilidades ainda devem ser resolvidas, tais como a segurança dos dados trafegados, largura de banda utilizada e autonomia de bateria dos dispositivos. Este trabalho apresenta uma avaliação de modelos otimizados de Tiny Machine Learning (TinyML), onde são investigados os benefícios de se ter em um dispositivo sensor, um algoritmo otimizado onde a inferência dos dados é realizada localmente. O desempenho de cada uma das técnicas é avaliado, bem como a capacidade de redução que elas promovem. Um estudo de caso é apresentado em uma rede LoRa, onde um conjunto de dados é utilizado para avaliar o desempenho energético do modelo. O resultado evidencia redução de quase 4 vezes no consumo de energia na proposta de detecção de anomalia na borda.pt_BR
dc.description.abstractThe advancement of Internet of Things (IoT) applications in the context of low-power long-distance networks today is notorious. However, thus some weaknesses also appeared, such as the security of the data transmitted, bandwidth and battery life of the devices. This work presents an evaluation of optimized Tiny Machine Learning (TinyML) models. The benefits of having an optimized algorithm in a sensor device are evaluated, where the data inference is performed locally. The performance of each of the techniques will be evaluated, as well as the reduction capacity they promote. A case study is presented in a LoRa network, where a dataset is used to evaluate the energy performance of the model. The result was an approximate 4x drop in power consumption in the edge anomaly detection.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectAprendizado de máquinapt_BR
dc.subjectOptimizationen
dc.subjectDetecção de falhaspt_BR
dc.subjectTinyMLen
dc.subjectInternet das coisaspt_BR
dc.subjectAnomaly detectionen
dc.subjectLow-power wide-area networken
dc.titleAvaliação de modelos otimizados de TinyML para detecção de anomalias em IoTpt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb001159893pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.programPrograma de Pós-Graduação em Engenharia Elétricapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2022pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples