Activation of AKT/mammalian target of rapamycin signaling in the peripheral blood of women with premature ovarian insufficiency and its correlation with FMR1 expression
Visualizar/abrir
Data
2022Autor
Tipo
Assunto
Abstract
Background: The protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates early follicular activation and follicular pool maintenance in female germline cells. Fragile X mental retardation 1 (FMR1) regulates folliculogenesis and it is variably expressed in patients with Premature Ovary Insufficiency. FMR1 expression is supposed to be linked to AKT/mTOR signaling in an ovarian response dependent manner as demonstrated in recent in vitro and in vivo studies in the fe ...
Background: The protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates early follicular activation and follicular pool maintenance in female germline cells. Fragile X mental retardation 1 (FMR1) regulates folliculogenesis and it is variably expressed in patients with Premature Ovary Insufficiency. FMR1 expression is supposed to be linked to AKT/mTOR signaling in an ovarian response dependent manner as demonstrated in recent in vitro and in vivo studies in the female germline in vitro and in vivo. Methods: We evaluated changes in the expression of AKT/mTOR signaling pathway genes by real time PCR in the peripheral blood of 74 patients with Premature Ovarian Insufficiency and 56 fertile controls and correlated their expression with FMR1 expression. Results: Expression of the genes AKT1, TSC2, mTOR, and S6K was significantly more abundant in patients with POI than in the controls. For AKT1, TSC2 and mTOR, gene expression was not affected by FMR1-CGG repeat number in the 5´-untranslated region. FMR1 and S6K expression levels, however, were significantly upregulated in patients with POI and an FMR1 premutation. Independent of a premutation, expression of mTOR, S6K, and TSC2 was significantly correlated with that of FMR1 in all patients. Furthermore, when grouped according to ovarian reserve, this effect remained significant only for mTOR and S6K, with higher significance note in patients with Premature Ovarian Insufficiency than in the controls. Conclusions: In Premature ovarian insufficiency patients, activation of AKT/mTOR signaling pathway is remarkable and putatively pathognomonic. Additionally, it seems to be triggered by an FMR1/mTOR/S6K linkage mechanism, most relevant in premutation carriers. ...
Contido em
Reproductive biology and endocrinology. London. Vol. 20 (2022), 44, 7 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (40977)Ciências da Saúde (10957)
Este item está licenciado na Creative Commons License