An active plasma beam dump for EuPRAXIA beams
View/ Open
Date
2021Author
Type
Subject
Abstract
Plasma wakefields driven by high power lasers or relativistic particle beams can be orders of magnitude larger than the fields produced in conventional accelerating structures. Since the plasma wakefield is composed not only of accelerating but also of decelerating phases, this paper proposes to utilize the strong decelerating field induced by a laser pulse in the plasma to absorb the beam energy, in a scheme known as the active plasma beam dump. The design of this active plasma beam dump has c ...
Plasma wakefields driven by high power lasers or relativistic particle beams can be orders of magnitude larger than the fields produced in conventional accelerating structures. Since the plasma wakefield is composed not only of accelerating but also of decelerating phases, this paper proposes to utilize the strong decelerating field induced by a laser pulse in the plasma to absorb the beam energy, in a scheme known as the active plasma beam dump. The design of this active plasma beam dump has considered the beam output by the EuPRAXIA facility. Analytical estimates were obtained, and compared with particle-in-cell simulations. The obtained results indicate that this active plasma beam dump can contribute for more compact, safer, and greener accelerators in the near future. ...
In
Instruments [recurso eletrônico]. Basel. Vol. 5, no. 3 (2021), Art. 24, 13 p.
Source
Foreign
Collections
-
Journal Articles (40917)Engineering (2456)
This item is licensed under a Creative Commons License