Charge regulation of colloidal particles : theory and simulations
Visualizar/abrir
Data
2019Tipo
Abstract
To explore charge regulation (CR) in physicochemical and biophysical systems, we present a model of colloidal particles with sticky adsorption sites which account for the formation of covalent bonds between the hydronium ions and the surface functional groups. Using this model and Monte Carlo simulations, we find that the standard Ninham and Parsegian (NP) theory of CR leads to results which deviate significantly from computer simulations. The problem with the NP approach is traced back to the ...
To explore charge regulation (CR) in physicochemical and biophysical systems, we present a model of colloidal particles with sticky adsorption sites which account for the formation of covalent bonds between the hydronium ions and the surface functional groups. Using this model and Monte Carlo simulations, we find that the standard Ninham and Parsegian (NP) theory of CR leads to results which deviate significantly from computer simulations. The problem with the NP approach is traced back to the use of a bulk equilibrium constant to account for surface chemical reactions. To resolve this difficulty we present a new theory of CR. The fundamental ingredient of the new approach is the sticky length, which is nontrivially related to the bulk equilibrium constant. The theory is found to be in excellent agreement with computer simulations, without any adjustable parameters. As an application of the theory we calculate the effective charge of colloidal particles containing carboxyl groups, as a function of pH and salt concentration. ...
Contido em
Physical review letters. Vol. 123, no. 20 (Nov. 2019), 208004, 6 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (41542)Ciências Exatas e da Terra (6257)
Este item está licenciado na Creative Commons License