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To explore charge regulation (CR) in physicochemical and biophysical systems, we present a model of
colloidal particles with sticky adsorption sites which account for the formation of covalent bonds between
the hydronium ions and the surface functional groups. Using this model and Monte Carlo simulations, we
find that the standard Ninham and Parsegian (NP) theory of CR leads to results which deviate significantly
from computer simulations. The problem with the NP approach is traced back to the use of a bulk
equilibrium constant to account for surface chemical reactions. To resolve this difficulty we present a new
theory of CR. The fundamental ingredient of the new approach is the sticky length, which is nontrivially
related to the bulk equilibrium constant. The theory is found to be in excellent agreement with computer
simulations, without any adjustable parameters. As an application of the theory we calculate the effective
charge of colloidal particles containing carboxyl groups, as a function of pH and salt concentration.
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Electrostatic interactions play a fundamental role in
physics, chemistry, and biology. The long-range nature
of the Coulomb force, however, makes it very difficult to
study theoretically [1]. In aqueous systems ions are usually
hydrated by water molecules. On the other hand, acids lose
a proton, which associates with the water molecule forming
a hydronium ion [2]. There are many reactions that are
controlled by pH, and the acid-base equilibrium directly
influences the functionality of biomolecules. Although pH
can be easily tuned in experiments, it is much more difficult
to account for the chemical equilibrium in theoretical and
simulation studies [3].
Colloidal particles often have organic functional groups

on their surfaces. In aqueous systems these groups
dissociate, losing a proton, resulting in a colloidal surface
charge [4–7]. The amount of surface charge strongly
depends on the pH of the environment [8,9] and is
controlled by the chemical equilibrium between hydronium
ions and the functional groups. This process is known as
charge regulation (CR) [10–16]. The concept of charge
regulation was first described by Linderstrøm-Lang
[17–19] and studied theoretically by Ninham and
Parsegian. [20]. CR is of fundamental importance in
colloidal science [10,21–32] and biophysics [33–39]. It
has been applied to explore the stability of electrical double
layers [9,40–45] and is of great technological importance
in fields as diverse as mineral preparation, agriculture,
ceramics, and surface coating [46].

Consider a weak acid HA in equilibrium with bulk water,
HAþ H2O ⇄ H3Oþ þ A−. For dilute solutions the con-
centration of all species is controlled by the law of mass
action, Keq ¼ cHA=cA−cHþ , where Keq is the equilibrium
constant and c indicates the concentration of each species.
Ninham and Parsegian (NP) supposed that the same
equilibrium relation will hold for the reactive (acidic) sites
on the colloidal surface with the local concentration of
hydronium determined by the Boltzmann distribution,
csurfHþ ¼ cbulkHþ expð−βqϕ0Þ where β ¼ 1=kBT, q is the proton
charge, and ϕ0 is the surface electrostatic potential. NP
concluded that the effective surface charge of the colloidal
particle will be renormalized from its bare value −qσ0,
corresponding to all functional groups being ionized, by the
associated protons. Taking into account the surface equi-
librium of hydronium through the Langmuir adsorption
isotherm, they argued that one can use the usual Poisson-
Boltzmann (PB) equation to account for the distribution of
ions around the colloidal particle, but with the effective
renormalized surface charge given by

qσr ¼ −qσ0 þ
KeqNsiteqcae−βqϕ0

4πa2ð1þ Keqcae−βqϕ0Þ ; ð1Þ

where Nsite is the number of ionizable surface groups, a is
the colloidal radius, and ca is the bulk concentration of
hydronium ions, ca ¼ 10−pH M. Within the NP formalism
Keq is the usual bulk equilibrium constant. If the surface
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groups are strongly acidic Keq → 0, all the surface groups
are ionized, qσr → −qσ0.
NP theory has been extensively used to study various

biological and chemical systems. However, since within the
experiment there is always uncertainty about the underlying
physical parameters—the surface charge, location of the
shear plane, the appropriate equilibrium constant—it is
hard to judge the validity of a theory. In this Letter we
propose a model of CR that has no ambiguities of an
experimental system and can be solved exactly using
computer simulations. With the help of this model, we
find that predictions of NP theory deviate significantly from
the results of simulations. We then introduce a new theory
which agrees perfectly with the simulation data, allowing
us to uniquely predict the number of ionized groups and the
ionic distribution around a CR colloidal particle, without
any adjustable parameters.
The fundamental parameter in the NP theory is the

equilibrium constant. We start, then, by showing how the
equilibrium constant can be calculated from a microscopic
model. To do this we first consider the Baxter model [47] of
sticky hard spheres of species H and A. For simplicity we
will suppose that both particles have the same diameter,
d ¼ 2rion. The H-H and A-A interactions are purely
hardcore repulsion, while collisions between H and A
can result in the formation of molecules HA. The H-A
interaction potential is u ¼ ust þ uhc, where the hard core
potential is uhc ¼ ∞ for r < d and 0 otherwise. The
attractive sticky potential of range δr,

ustðrÞ ¼
�
0; r < d and r > dþ δr;

−ϵ; d ≤ r ≤ dþ δr;
ð2Þ

is used tomodel the chemical bonding betweenH andA. The
Boltzmann factor for the sticky potential can then bewritten
as e−βustðrÞ ¼ 1þ δrðeβϵ − 1ÞΔðrÞ, where ΔðrÞ is [11]

ΔðrÞ ¼
� 1

δr
; d ≤ r ≤ dþ δr;

0; r < d or r > dþ δr:
ð3Þ

In the Baxter sticky limit, δr → 0, ϵ → ∞, while the sticky
length lg ≡ δrðeβϵ − 1Þ remains constant, the Boltzmann
factor reduces to

e−βustðrÞ ¼ 1þ lgδðr − dÞ; ð4Þ

where δðrÞ is the Dirac delta function. The sticky length
accounts for the strength of covalent bonds between the
atoms and will be directly related to the acid ionization
constant.
The equation of state can be calculated using either the

“physical picture,” which takes into account only “atoms”
H and A, or an alternative “chemical picture” in which
besides the free unassociated particles H and A, there are

also present molecules HA. Clearly both approaches must
lead to the same equation of state [48]. Within the physical
picture the osmotic pressure P can be obtained using the
virial expansion [49]:

βP ¼ cH þ cA þ BHHc2H þ BAAc2A

þ 2BHAcHcA þOðcA þ cHÞ3; ð5Þ
where Bij are the second virial coefficients [49]:

Bij ¼ 2π

Z
∞

0

ð1 − e−βuijðrÞÞr2dr: ð6Þ

For the case i ¼ j the interaction is just the hard sphere
repulsion, so that BAA ¼ BHH ¼ 2

3
πd3 and BHA ¼

2
3
πd3 þ B̄HA, where B̄HA ¼ 2π

R
∞
d ð1 − e−βuijðrÞÞr2dr. On

other hand, in the chemical picture there are three species:
free H and A, as well as molecules HA. The equation of
state can be written in terms of the respective concen-
trations designated by c�, such that c�A ¼ cA − c�HA and
c�H ¼ cH − c�HA, and to second order in density is

βP¼c�Hþc�Aþc�HAþ
2π

3
d3ðc�Aþc�HÞ2þOðc�Aþc�HÞ3 ð7Þ

where the fourth term is just the hardcore contribution
to the osmotic pressure. In equilibrium c�HA ¼ K0

eqc�Hc
�
A,

where K0
eq is the equilibrium constant. Comparing Eq. (5)

and Eq. (7), we obtain

K0
eq ¼ −2B̄HA ¼ 4π

Z
∞

d
ðe−βustðrÞ − 1Þr2dr: ð8Þ

In the Baxter sticky limit the equilibrium constant sim-
plifies to K0

eq ¼ 4πd2lg. In this simple calculation our
particles H and A interacted only through a hard core
repulsion and a short range attraction. If we are interested in
modeling the acidic groups, both H and A must also carry
charge, Hþ and A−. In this case the calculations become
much more involved, since the usual virial expansion
diverges and instead a certain class of diagrams must be
summed together to obtain a convergent result [49]. This
leads to a nonanalytic term proportional to c3=2 in the
density expansion. Falkenhagen and Ebeling [50,51] stud-
ied this problem in order to account for the formation of
Bjerrum pairs in a 1∶1 electrolyte solution, and we can
extend their results to the particles which in addition to the
Coulomb force also interact through a short range sticky
potential, for details of the derivation see Supplemental
Material (SM)[52]. In our case the equilibrium constant
becomes

Keq ¼ 4πd2lgeb þ KEb; ð9Þ
where b ¼ λB=d and λB is the Bjerrum length q2=ϵwkBT.
The Ebeling equilibrium constant is [53]
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KEb ¼ 8πd3
�
1

12
b3½EiðbÞ − Eið−bÞ� − 1

3
cosh b

−
1

6
b sinh b −

1

6
b2 cosh bþ 1

3
þ 1

2
b2
�
; ð10Þ

where Ei is the exponential integral function.
We can now explore the validity of NP theory by

constructing a simple model of a colloidal particle with
A− sticky surface groups, see Fig. 1(a). This model can then
be studied using Monte Carlo (MC) simulations [54,55].
Knowledge of the equilibrium constant Keq will also allow
us to directly compare the effective colloidal charge and the
ionic density profiles obtained using NP theory with the
results of MC simulations.
The simulations are performed inside a spherical

Wigner-Seitz (WS) cell of radius R, determined by the
colloidal volume fraction in the suspension, v ¼ a3=R3. A
colloidal particle of radius a ¼ 100 Å and Z spherical
adsorption sites of radius 2 Å and charge −q, randomly
distributed on its surface, is placed at the center of the
simulation cell, see Fig. 1(a). The bare colloidal charge
−Zq is the same as the number of adsorption sites. The WS
cell also contains hydronium ions at bulk concentration
ca ¼ 10−pH, derived from the dissociation of a strong acid,
as well as 1∶1 strong electrolyte at concentration cs. The
hydronium ions interact with the adsorption sites through
both the Coulomb and short range Baxter potential with
lg ¼ 109.97 Å, while all other ions interact only through
the Coulomb force. All ions and sticky sites are modeled as
hard spheres of radius r ¼ 2 Å, with a point charge at the
center. Note that the alkali metal cations derived from the
dissociation of salt can come as close to the adsorption sites
as the hard core repulsion allows; however, since there is no
chemical reaction between Naþ and carboxyl in water—
sodium acetate is a very strong electrolyte and is fully
dissociated in water—we assume that there is only a
Coulomb interaction between alkali metal cations and
the surface groups.
To perform the simulations we have used a progressively

smaller values of δr, and larger values of ϵ to check the
convergence to the Baxter sticky limit, see the discussion in
the SM. The solvent is treated as a dielectric continuum of
permittivity ϵw ¼ 80, with Bjerrum length λB ¼ 7.2 Å. If

the hydronium ion adsorbs to a sticky site, the site becomes
inactive (stickiness is turned off) and no other hydroniums
can be adsorbed. This mimics the chemical reaction which
takes place at the adsorption (sticky) site. Note that in the
simulation the sites are active or inactive depending on
whether there is a hydronium ion within the range of the
potential uðrÞ, see the SM for more details. We have
used 5 × 106 MC steps for equilibration and 105 steps for
production.
In Fig. 2 we compare the density profiles obtained using

the MC simulations with the predictions of NP theory using
the bulk equilibrium constant derived in Eq. (9). We see
that there is a significant deviation between the theory and
simulations, even when only neutralizing hydronium ions
are present inside the simulation cell.
We can trace the breakdown of the NP theory to the use

of the bulk equilibrium constant to account for the surface
chemical reaction. While the particles in the bulk are free to
move, the adsorption sites are bound to the surface. This
affects the entropic contribution to the adsorption free
energy. Furthermore, as can be seen from Eq. (9), the bulk
equilibrium constant also includes a contribution from the
Coulomb interaction between the two oppositely charged
ions that form neutral molecules. On the other hand, the
Coulomb interaction is also taken into account in the
solution of the PB equation and is, therefore, counted
twice. Finally, the concentration of ions near a strongly
charged surface can be so large that the use of concentration
instead of activity, might not be justified. In view of these
observations, we now propose a different approach to CR.
Let us first imagine that the whole colloidal surface is

uniformly sticky. The concentration of ions around the
colloidal particle will then satisfy a modified PB (MPB)
equation

(a) (b)

FIG. 1. (a) Representation of a colloidal particle with spherical
A− sticky site on its surface. (b) Mapping of spherical sticky sites
onto disklike surface patches used in the new theory of CR.
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FIG. 2. Density profile of hydronium counterions measured in
particles per Å3. Symbols are the simulation data and solid (red)
and dashed (green) lines are the predictions of the NP theory and
of the theory developed in the present Letter, respectively. The
parameters are a ¼ 100 Å, R ¼ 200 Å, and lg ¼ 109.97 Å. In
(a) and (b) the colloidal particles have respectively 300 and 600
active surface sites.
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∇2ϕðrÞ ¼ −
4πq
ϵw

½−σ0δðr − aÞ þ cHþðrÞ þ cþðrÞ − c−ðrÞ�;

ð11Þ

where σ0 ¼ Z=4πðaþ rionÞ2. The ionic concentrations are
cHþðrÞ ¼ cae−β½uðrÞþqϕðrÞ� ð12Þ
cþðrÞ ¼ cse−βqϕðrÞ ð13Þ
c−ðrÞ ¼ ðca þ csÞeβqϕðrÞ; ð14Þ

where the bulk concentration of hydronium is
ca ¼ 10−pH M, and cs is the bulk concentration of salt.
Using Eq. (4) we obtain e−β½uðrÞþqϕðrÞ� ¼

½1 − lgδðr − a − rionÞ�e−βqϕðrÞ. The surface concentration
of adsorbed ions is then

σa ¼ calge−βqϕ0 ; ð15Þ
where ϕ0 ¼ ϕðaþ rionÞ is the contact electrostatic poten-
tial. The net surface charge density is then qσnet ¼
−qσ0 þ qσa.
The real colloidal surface, however, is not uniformly

sticky, instead hydronium ions can adsorb only at the
specific functional groups, see, Fig. 1(a). To understand the
role of discreteness of the surface charge [56], let us first
consider a much simpler problem. Suppose we have an
isolated colloidal particle (no other ions), with Z fully
ionized surface groups. How much work must be done to
bring a counterion from infinity into contact with one of the
surface groups? To answer this question, let us first
consider a spherical 2D one component plasma (OCP)
of Z charged point particles on a sphere of radius a
with a neutralizing uniform background. In a crystal or
amorphous state the electrostatic energy of this OCP is
FOCP ≈ −Mq2Z3=2=2ϵwa, where M ¼ 1.106 is the
Madelung constant [1]. On the other hand the OCP energy
can also be split into distinct contributions:
FOCP ¼ Z2q2=2ϵwa − Z2q2=ϵwaþ Fqq, where the first
term is the self-energy of the neutralizing background,
the second term is the interaction of the discrete charges
with the background, and the last term is the interaction
energy between the discrete charges. This last term is of
particular interest to us since it is precisely the electrostatic
energy of an isolated colloidal particle with discrete surface
groups. Using the expressions above, it can be written as

FqqðZÞ ¼ Z2q2

2ϵwa
−
Mq2Z3=2

2ϵwa
: ð16Þ

The work required to bringing a counterion to the colloidal
surface equals to the change in the electrostatic energy μ ¼
FqqðZ − 1Þ − FqqðZÞ or,

μ ≈ −
∂Fqq

∂Z ¼ −
Zq2

ϵwa
þ 3Mq2Z1=2

4ϵwa
: ð17Þ

Note that the first term on the right of Eq. (17) is just the
usual mean-field interaction energy between a counterion
and a uniformly charged sphere qϕ0, where ϕ0 is the
“mean-field” surface potential, while the second term is the
correction due to discrete nature of the surface charge
groups. If the counterion is brought into contact with one of
the surface groups, the total work φ0 is

βφ0 ¼ βqϕ0 þ
3MλBZ1=2

4a
−
λB
d
; ð18Þ

where the last term is the direct energy of interaction
between the site and the adsorbed counterion. With these
insights, we now return to the problem of a colloidal
particle inside an electrolyte solution. To simplify the
geometry we will map the sticky spherical sites onto sticky
circular disk patches of the same effective contact area.
Because of the hardcore repulsion only half of the area of a
spherical sticky site is available for adsorption, the patches
must then have radius rpatch ¼

ffiffiffi
2

p
d, see Fig. 1(b). Once

adsorption takes place, the site becomes inactive, but
continues to interact with the other ions through the
Coulomb potential. The fact that only part of the colloidal
surface is sticky can be taken into account by the renorm-
alization of the sticky length lg → leffg ¼ lgαeff , where αeff is
the fraction of colloidal surface area occupied by the active
sticky patches,

αeff ¼
Nact

siter
2
patch

4a2
: ð19Þ

The number of active sites, Nact
site, is determined from

Eq. (15) with lg → leffg and ϕ0 → φ0, so that
Nact

site ¼ Z − 4πa2caleffg e−βφ0 . The surface electrostatic
potential φ0 is given by Eq. (18), with ϕ0 now being the
mean-field surface electrostatic potential, which must be
calculated self-consistently from the solution of the PB
equation. The equation leffg ¼ lgαeff and Eq. (19) can now
be solved to obtain the effective sticky length

leffg ¼ lgZr2patch
4a2ð1þ lgcae−βφ0πr2patchÞ

: ð20Þ

The effective surface charge density to be used as
the boundary condition for the PB equation is then
qσeff ¼ −qσ0 þ qleffg cae−βφ0 . We now solve the PB
equation with the boundary conditions ϕ0ðaþ rionÞ ¼
4πqσeff=ϵw and ϕ0ðRÞ ¼ 0, due to the overall charge
neutrality. The calculation is performed numerically using
the fourth-order Runge-Kutta method, in which the value
of the surface potential ϕðaþrionÞ¼ϕ0 is adjusted based on
the Newton-Raphson algorithm to obtain zero electric field
at the cell boundary. In Fig. 3 we compare the ionic density
profile obtained using MC simulations and the new theory.
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The agreement is excellent, without any adjustable
parameters.
Having established the accuracy of the theoretical

approach, we now use it to calculate the effective charge
of colloidal particles stabilized by surface carboxyl groups
with acid ionization constant Ka ¼ 1.8 × 10−5 M. Note
that the equilibrium constant Keq defined in the present
work is the inverse of Ka. Using Keq ¼ 1=Ka in Eq. (9)
allows us to obtain the sticky length lg. In Fig. 4 we show
the dependence of the effective colloidal charge on the pH
and salt concentration for particles with Z ¼ 600 functional
groups on the surface. In the SM we also plot the behavior
of the modulus of the contact electrostatic potential. While
Zeff increases with salt, the modulus of the contact potential
and, therefore, the zeta potential, decrease with the salt
concentration [57].

In this Letter we have presented a model of colloidal
particle with sticky adsorption sites. Analyzing the thermo-
dynamics of ionic association, we were able to relate the
interaction potential between the adsorption sites and
hydronium ions with the bulk equilibrium constant. With
the help of this model we discovered that existing
approaches were not able to quantitatively account for
CR, predicting the incorrect value of the colloidal charge
and ionic density profiles which deviated significantly from
simulations. With the insights gained from the simulations,
we were able to introduce a new theory of CR. The next
step is to explore the role of CR on the interaction between
colloidal particles and the role that it will play in the
stability of colloidal suspensions. This should be possible
to do by implementing the CR boundary condition analo-
gously to the approach recently employed for metal
particles [58].
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