Mostrar registro simples

dc.contributor.advisorNavaux, Philippe Olivier Alexandrept_BR
dc.contributor.authorSerpa, Matheus da Silvapt_BR
dc.date.accessioned2018-10-09T02:33:33Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/183139pt_BR
dc.description.abstractNowadays, there are several different architectures available not only for the industry but also for final consumers. Traditional multi-core processors, GPUs, accelerators such as the Xeon Phi, or even energy efficiency-driven processors such as the ARM family, present very different architectural characteristics. This wide range of characteristics presents a challenge for the developers of applications. Developers must deal with different instruction sets, memory hierarchies, or even different programming paradigms when programming for these architectures. To optimize an application, it is important to have a deep understanding of how it behaves on different architectures. Related work proved to have a wide variety of solutions. Most of then focused on improving only memory performance. Others focus on load balancing, vectorization, and thread and data mapping, but perform them separately, losing optimization opportunities. In this master thesis, we propose several optimization techniques to improve the performance of a real-world seismic exploration application provided by Petrobras, a multinational corporation in the petroleum industry. In our experiments, we show that loop interchange is a useful technique to improve the performance of different cache memory levels, improving the performance by up to 5.3 and 3.9 on the Intel Broadwell and Intel Knights Landing architectures, respectively. By changing the code to enable vectorization, performance was increased by up to 1.4 and 6.5 . Load Balancing improved the performance by up to 1.1 on Knights Landing. Thread and data mapping techniques were also evaluated, with a performance improvement of up to 1.6 and 4.4 . We also compared the best version of each architecture and showed that we were able to improve the performance of Broadwell by 22.7 and Knights Landing by 56.7 compared to a naive version, but, in the end, Broadwell was 1.2 faster than Knights Landing.en
dc.description.abstractAtualmente, existe uma variedade de arquiteturas disponíveis não apenas para a indústria, mas também para consumidores finais. Processadores multi-core tradicionais, GPUs, aceleradores, como o Xeon Phi, ou até mesmo processadores orientados para eficiência energética, como a família ARM, apresentam características arquiteturais muito diferentes. Essa ampla gama de características representa um desafio para os desenvolvedores de aplicações. Os desenvolvedores devem lidar com diferentes conjuntos de instruções, hierarquias de memória, ou até mesmo diferentes paradigmas de programação ao programar para essas arquiteturas. Para otimizar uma aplicação, é importante ter uma compreensão profunda de como ela se comporta em diferentes arquiteturas. Os trabalhos relacionados provaram ter uma ampla variedade de soluções. A maioria deles se concentrou em melhorar apenas o desempenho da memória. Outros se concentram no balanceamento de carga, na vetorização e no mapeamento de threads e dados, mas os realizam separadamente, perdendo oportunidades de otimização. Nesta dissertação de mestrado, foram propostas várias técnicas de otimização para melhorar o desempenho de uma aplicação de exploração sísmica real fornecida pela Petrobras, uma empresa multinacional do setor de petróleo. Os experimentos mostram que loop interchange é uma técnica útil para melhorar o desempenho de diferentes níveis de memória cache, melhorando o desempenho em até 5,3 e 3,9 nas arquiteturas Intel Broadwell e Intel Knights Landing, respectivamente. Ao alterar o código para ativar a vetorização, o desempenho foi aumentado em até 1,4 e 6,5 . O balanceamento de carga melhorou o desempenho em até 1,1 no Knights Landing. Técnicas de mapeamento de threads e dados também foram avaliadas, com uma melhora de desempenho de até 1,6 e 4,4 . O ganho de desempenho do Broadwell foi de 22,7 e do Knights Landing de 56,7 em comparação com uma versão sem otimizações, mas, no final, o Broadwell foi 1,2 mais rápido que o Knights Landing.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectAvaliacao : Desempenhopt_BR
dc.subjectPerformance evaluationen
dc.subjectHardwarept_BR
dc.subjectHPCen
dc.subjectSoftwarept_BR
dc.subjectMany-coreen
dc.subjectSource code optimizationsen
dc.titleSource code optimizations to reduce multi core and many core performance bottleneckspt_BR
dc.title.alternativeOtimizações de código fonte para reduzir gargalos de desempenho em multi core e many core pt
dc.typeDissertaçãopt_BR
dc.identifier.nrb001077535pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2018pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples