Estudo numérico do controle passivo de camada limite via geradores de vórtices em perfil aerodinâmico de um veículo de competição
Visualizar/abrir
Data
2018Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos di ...
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos diferentes casos analisados. Domínio de cálculo, malha, condições de contorno e critério de convergência foram escolhidos com base em norma SAE para análise numérica de escoamento externo em veículos terrestres. As camadas de volumes prismáticos próximos as superfícies com não-deslizamento foram dimensionadas de forma a resultar em um tratamento de parede adequado ao modelo de turbulência aplicado. O método GCI (Grid Convergence Index) foi utilizado para avaliar a qualidade da malha. Com o intuito de reduzir o custo computacional nos testes com diferentes configurações de geradores de vórtices, apenas parte de interesse do domínio de cálculo foi resolvido, impondo perfis de velocidade, energia cinética da turbulência e dissipação específica em sua entrada. Estas condições foram importadas da simulação com domínio completo resolvida Para verificar a correta captação dos principais efeitos físicos envolvidos, comparações com resultados experimentais foram feitas para 2 casos com escoamentos representativos: o corpo de Ahmed e um perfil aerodinâmico com geradores de vórtices. Além disso, as diferenças entre resolver o domínio completo ou parcial foram estudadas em outro comparativo com resultados experimentais. Concluiu-se que a metodologia numérica foi capaz de obter os coeficientes aerodinâmicos, e suas tendências frente a mudanças de geometria, nos casos estudados. Resolver parcialmente o domínio, impondo perfis em sua entrada, acarretou em diferença nos coeficientes obtidos na ordem de 2% para o coeficiente de sustentação e 7% para o coeficiente de arrasto. O controle passivo via geradores de vórtices foi eficaz em atrasar a separação da camada limite no flap do veículo de Fórmula SAE, as melhoras nos coeficientes de arrasto e sustentação foram da ordem de 7% e 0,3%, respectivamente. ...
Abstract
The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh ...
The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh, boundary conditions and convergence criteria were chosen based on SAE standard for numerical analysis of external flow in land vehicles. The layers of prismatic volumes near the non-slip surfaces were dimensioned to result in a wall treatment suitable to the applied turbulence model. The Grid Convergence Index (GCI) method was applied to evaluate the mesh quality. In order to reduce the computational cost in tests with different vortex generators configurations, only the part of interest of the calculation domain was solved, imposing velocity, turbulent kinetic energy and specific dissipation profiles on its inlet These conditions were imported from the full domain simulation already solved. To verify the correct capture of the main physical effects involved, comparisons with experimental results were made for 2 cases with representative flows: the Ahmed body and an aerodynamic profile with vortex generators. In addition, the differences between solving the complete or partial domain were studied in another comparative with experimental results. It was concluded that the numerical methodology was able to obtain the aerodynamic coefficients, and their tendencies against changes of geometry, in the cases studied. Partially solving the domain, imposing profiles at its entrance, resulted in a difference in the coefficients obtained in the order of 2% for the lift coefficient and 7% for the drag coefficient. The passive control via vortex generators was effective in delaying the separation of the boundary layer on the flap of the Formula SAE vehicle, the improvements in drag and lift coefficients were of the order of 7% and 0,3%, respectively. ...
Instituição
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Coleções
-
Engenharias (7412)Engenharia Mecânica (826)
Este item está licenciado na Creative Commons License