Estudo da usinabilidade no torneamento a seco do aço inoxidável martensítico AISI 420 C endurecido com ferramenta de metal-duro
Visualizar/abrir
Data
2017Orientador
Co-orientador
Nível acadêmico
Doutorado
Tipo
Assunto
Resumo
O estudo de usinabilidade de um material é muito importante para a determinação das características de fabricação por usinagem. Este estudo se aplica ao aço inoxidável martensítico AISI 420 C endurecido, usado na fabricação de peças de alta precisão, instrumentos cirúrgicos, eixos, turbinas e cutelaria. Deste modo, realizaram-se investigações utilizando corpos de prova endurecidos (têmpera e revenimento) com durezas de (48 1) e (53 2) HRC no torneamento a seco utilizando ferramentas de meta ...
O estudo de usinabilidade de um material é muito importante para a determinação das características de fabricação por usinagem. Este estudo se aplica ao aço inoxidável martensítico AISI 420 C endurecido, usado na fabricação de peças de alta precisão, instrumentos cirúrgicos, eixos, turbinas e cutelaria. Deste modo, realizaram-se investigações utilizando corpos de prova endurecidos (têmpera e revenimento) com durezas de (48 1) e (53 2) HRC no torneamento a seco utilizando ferramentas de metal-duro classe ISO S com grãos extrafinos e revestimento PVD. Para estes corpos de prova variaram-se a velocidade de corte e o avanço e avaliaram-se as forças de usinagem e as tensões residuais geradas na peça. Para o material com 53 HRC, também foram analisadas a vida da ferramenta e a rugosidade. Na análise dos resultados obtidos para o material com 48 HRC, as tensões residuais tornaram-se menos compressivas (circunferencial) e mais trativas (axial) com o aumento do avanço. Além disso, os menores valores de tensão residual foram gerados utilizando menor avanço com maior velocidade de corte. Nos ensaios para o material a 53 HRC, o tempo de vida da ferramenta ficou entre 100 e 350 min para as condições ensaiadas. Os desgastes de flanco e entalhe foram evidenciados em todas as situações. O flanco da ferramenta também apresentou adesão de material da peça em todas as condições. Ao analisar os insertos em seu fim de vida, constatou-se que os mecanismos de desgastes predominantes foram a abrasão e o atrittion. Nas condições mais severas, a superfície da ferramenta exibiu trincas mecânicas e a camada subsuperficial da peça apresentou modificações microestruturais. Os perfis e os parâmetros de rugosidade registrados foram afetados pelo desgaste ao longo da vida da ferramenta. Com relação às tensões residuais circunferenciais geradas com a ferramenta nova, estas foram, em sua maioria, tensões de compressão. Com a progressão do desgaste de flanco, houve um aumento dos valores das tensões (de compressivas para menos compressivas ou até mesmo trativas). Já para as tensões axiais, os valores mostraram a tendência de se manterem compressivos. Observou-se para os perfis de tensões analisados que as tensões residuais foram compressivas e dependeram da profundidade da camada subsuperficial. Portanto, dentro das condições estudadas, conclui-se que peças de AISI 420 C endurecido podem ser fabricadas por torneamento de acabamento com ferramentas de metal-duro, permitindo obter vida longa para a ferramenta de corte, baixos valores de rugosidade, bem como valores de tensão residual compressiva, que são dados de usinabilidade importantes para esse material. ...
Abstract
The study of the material’s machinability is very important for the determination of important machining properties. This logic applies to hardened martensitic stainless steel AISI 420 C used in the manufacture of high precision parts, surgical instruments, shafts, turbines and cutlery. In this way, investigations were carried out using hardened workpieces (quenching and tempering) with hardness of (48 1) and (53 2 HRC) in dry turning using ISO-S grade carbide tools with extra-fine grains a ...
The study of the material’s machinability is very important for the determination of important machining properties. This logic applies to hardened martensitic stainless steel AISI 420 C used in the manufacture of high precision parts, surgical instruments, shafts, turbines and cutlery. In this way, investigations were carried out using hardened workpieces (quenching and tempering) with hardness of (48 1) and (53 2 HRC) in dry turning using ISO-S grade carbide tools with extra-fine grains and PVD coating. For these workpieces, the cutting speed and the feed rate were varied and the machining forces and the residual stresses generated in the part were evaluated. For the material with 53 HRC, the tool-life and the surface roughness were also analyzed. In the analysis of the results obtained for the material with 48 HRC, residual stresses become less compressive (circumferential direction) and more tensile (axial direction) with increasing feed-rate. Moreover, smaller values of residual stress were generated using lower feed-rate at higher cutting speed. In the tests for the material at 53 HRC, the tool-life was between 100 and 350 min for the conditions tested. Flank and notch wear were evidenced in all situations. The flank face of the tool also showed adhesion of the workpiece material under all cutting conditions. When analyzing the inserts at their end of life, it was verified that the main mechanisms of tool wear were abrasion and attrition. In addition, under the most severe cutting conditions, the flank face of the tool exhibited mechanical cracks and the subsurface layer of the workpieces presented microstructural modifications. The registered profiles and roughness parameters were affected by wear during the tool-life. With respect to the circumferential residual stresses generated with the fresh tool, these were mostly compressive stresses. With the progression of tool flank wear, there was an increase in the values of the residual stress (from compressive to less compressive or even tractive). For the axial residual stresses, the values showed a tendency to remain compressive. It was observed for the residual stress profiles analyzed that the residual stresses were compressive and depended on the depth of subsurface layer. Therefore, within the cutting conditions considered, it can be concluded that hardened martensitic stainless steel AISI 420 C parts can be manufactured by finishing turning with carbide tools, allowing long tool-life, low surface roughness values, as well as compressive residual stress values, which are important machinability information for this material. ...
Instituição
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Coleções
-
Engenharias (7412)Engenharia Mecânica (826)
Este item está licenciado na Creative Commons License