Mostrar registro simples

dc.contributor.advisorGiasson, Elviopt_BR
dc.contributor.authorBonfatti, Benito Robertopt_BR
dc.date.accessioned2017-06-28T02:29:12Zpt_BR
dc.date.issued2017pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/163551pt_BR
dc.description.abstractO mapeamento digital tem se tornado uma das mais importantes ferramentas na predição e mapeamento de solos. Apesar de sua importância, é ainda pouco difundido no Brasil, principalmente na predição e mapeamento de atributos de solo. O objetivo desta tese foi apresentar e avaliar diferentes modelos que podem ser utilizados no mapeamento digital de atributos de solo. Primeiramente foram discutidos e analisados diferentes modelos empíricos e, em sequência, também foram avaliados modelos mecanísticos. Dois estudos foram apresentados, um envolvendo um modelo empírico para predição e mapeamento de concentração e estoque de carbono no solo e outro utilizando modelos mecanísticos para predição de profundidade do solo e sua alteração com o tempo, em diferentes posições da paisagem. Os estudos foram aplicados no Vale dos Vinhedos, RS. Ambos modelos apresentaram validação satisfatória e capacidade de mapear atributos de solos. O modelo empírico apresentou maior dependência em relação aos dados de campo e seus resultados variaram de acordo com o método escolhido e o número e representatividade amostral. O modelo mecanístico se mostrou complexo e importante para identificar tendências de distribuição do atributo mapeado (profundidade do solo), apesar da impossibilidade de modelar todos os fenômenos envolvidos durante a pedogênese. Também apresentou menor dependência das condições amostrais e condições para melhor compreensão do comportamento dos elementos envolvidos durante os fenômenos naturais de pedogênese. Ambos modelos podem ser utilizados no mapeamento digital de solos, considerando as suas vantagens e respeitando as limitações de cada técnica utilizada.pt_BR
dc.description.abstractThe digital mapping has become one of the most important tools on soil predicting and mapping. Although the importance, it is still a poorly disseminated methodology in Brazil, mainly when applied in soil attributes prediction and mapping. This thesis aimed to present and evaluate different models that can be used in digital mapping of soil attributes. Firstly, different techniques from empirical models to predict and map were discussed. In sequence, techniques from mechanistic models were also evaluated. Two studies were presented. The first study involved an empirical model to predict and map soil organic carbon content and stocks. The second used a mechanistic model to predict soil thickness and its variation over time in different landscape positions. The studies were conducted in Vale dos Vinhedos, RS, Brazil. Both models performance were considered satisfactory and able to map soil attributes. The empirical models depended from soil samples and results varied conform the method chosen, the soil samples number and representativity. The mechanistic models showed complexity and it was important to identify soil thickness tendencies, despite the impossibility to model all the phenomena involved during the pedogenesis. It was less dependent from soil samples and allowed a better understanding about the elements behavior involved. Both models can be used in digital mapping of soil attributes, considering their advantages and respecting each technique limitations.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectMapeamento digitalpt_BR
dc.subjectPedologiapt_BR
dc.subjectReconhecimento do solopt_BR
dc.subjectClassificacao do solopt_BR
dc.titleModelos empíricos e mecanísticos aplicados ao mapeamento digital de atributos de solospt_BR
dc.title.alternativeEmpirical and mechanistic models applied to digital mapping of soil attributes en
dc.typeTesept_BR
dc.identifier.nrb001025045pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentFaculdade de Agronomiapt_BR
dc.degree.programPrograma de Pós-Graduação em Ciência do Solopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2017pt_BR
dc.degree.leveldoutoradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples