Normalidade de variáveis : métodos de verificação e comparação de alguns testes não-paramétricos por simulação
Visualizar/abrir
Data
2012Tipo
Outro título
Normality of variables : diagnosis methods and comparison of some nonparametric tests by simulation
Assunto
Resumo
Introdução: Os principais testes estatísticos têm como suposição a normalidade dos dados, que deve ser verificada antes da realização das análises principais. Objetivo: Revisar as técnicas de verificação da normalidade dos dados e comparar alguns testes de aderência à normalidade para diferentes distribuições de origem e tamanho amostral. Metodologia: Através da simulação de cinco distribuições (Normal, t-student, Qui-Quadrado, Gama e Exponencial) e seis tamanhos amostrais (10, 30, 50, 100, 500 ...
Introdução: Os principais testes estatísticos têm como suposição a normalidade dos dados, que deve ser verificada antes da realização das análises principais. Objetivo: Revisar as técnicas de verificação da normalidade dos dados e comparar alguns testes de aderência à normalidade para diferentes distribuições de origem e tamanho amostral. Metodologia: Através da simulação de cinco distribuições (Normal, t-student, Qui-Quadrado, Gama e Exponencial) e seis tamanhos amostrais (10, 30, 50, 100, 500 e 1000) foram simulados 5000 amostras de cada par distribuição-tamanho amostral e realizados os testes Qui-quadrado, Kolmogorov-Smirnov, Lilliefors, Shapiro-Wilk, Shapiro-Francia, Cramer-von Mises, Anderson- Darling e Jarque-Bera. Resultados: Os resultados obtidos mostram uma clara superioridade dos testes Shapiro-Francia e Shapiro-Wilk, com percentuais de acerto de 72,41% e 72,15%, respectivamente. Entre os piores resultados encontramos o Kolmogorov-Smirnov e Qui-Quadrado, com percentual de acerto de 44,78% e 61,58%, respectivamente. Conclusões: Para amostras pequenas recomenda-se que sejam utilizados procedimentos não paramétricos diretamente para a análise, em função da baixa performance dos testes de aderência à normalidade, dado o baixo percentual de acertos. Para amostras maiores, recomenda-se o uso dos testes Shapiro-Francia ou Shapiro-Wilk. ...
Abstract
Background: The main statistical tests have the normality assumption that must be verified before performing the main analyzes. Objective: To review the techniques of testing for normality of data and compare some adherence tests for different true distributions and sample size. Method: Through simulation of five distributions (Normal, t-Student, Chi-Square, Gamma and Exponential) and six sample sizes (10, 30, 50, 100, 500 and 1000) were simulated 5000 samples of each pair sample size-distribut ...
Background: The main statistical tests have the normality assumption that must be verified before performing the main analyzes. Objective: To review the techniques of testing for normality of data and compare some adherence tests for different true distributions and sample size. Method: Through simulation of five distributions (Normal, t-Student, Chi-Square, Gamma and Exponential) and six sample sizes (10, 30, 50, 100, 500 and 1000) were simulated 5000 samples of each pair sample size-distribution and applied the Chi-square, Kolmogorov-Smirnov, Lilliefors, Shapiro-Wilk, Shapiro-Francia, Cramer-von Mises, Anderson-Darling and Jarque-Bera tests. Results: The results show a clear superiority of the Shapiro-Francia and Shapiro-Wilk tests, with percentages of accuracy of 72.41% and 72.15% respectively. Among the worst results we find the Kolmogorov-Smirnov and Chi-Square, with percentage of accuracy of 44.78% and 61.58% respectively. Conclusions: For small samples it is recommended to use non-parametric procedures directly for the analyzes, due to the low performance of the tests of adherence to normality, given the low percentage of accuracy. For larger samples, we recommend the use of the Shapiro-Francia and Shapiro-Wilk tests. ...
Contido em
Revista HCPA. Porto Alegre. Vol. 32 , no. 2 (2012), p. 227-234
Origem
Nacional
Coleções
-
Artigos de Periódicos (41094)Ciências da Saúde (10992)
-
Artigos de Periódicos (41094)Ciências Exatas e da Terra (6213)
Este item está licenciado na Creative Commons License