Método para detecção de corrupção de imagens DTI em tempo real
Visualizar/abrir
Data
2016Autor
Orientador
Nível acadêmico
Graduação
Assunto
Resumo
A fim de possibilitar a detecção de corrupção de exames de Imagem por Tensor de Difusão (DTI) em tempo real, desenvolveu-se um método que consiste de ajustar os espectros dos slices das imagens a gaussianas bidimensionais e utilizar os dados resultantes desse processo para classificação via Support-Vector Machine (SVM). Foram utilizados 6652 slices de cinco sujeitos diferentes. Em 1000 iterações nas quais dividiu-se o total de imagens em 90% para treino e 10% para teste, obteve-se uma taxa de a ...
A fim de possibilitar a detecção de corrupção de exames de Imagem por Tensor de Difusão (DTI) em tempo real, desenvolveu-se um método que consiste de ajustar os espectros dos slices das imagens a gaussianas bidimensionais e utilizar os dados resultantes desse processo para classificação via Support-Vector Machine (SVM). Foram utilizados 6652 slices de cinco sujeitos diferentes. Em 1000 iterações nas quais dividiu-se o total de imagens em 90% para treino e 10% para teste, obteve-se uma taxa de acerto média de 96,60% com desvio padrão de 0,67%. Para implementação em tempo real é recomendado o processamento das imagens intercaladamente utilizando dois núcleos de processamento em paralelo. ...
Abstract
In order to enable real-time corruption detection of Diffusion Tensor Imaging (DTI) exams, a method consisting of fitting the images’ slices’ spectra and using the data resulting from this process for classification via Support-Vector Machine (SVM) was developed. A set of 6652 slices from five different subjects was used. After 1000 iterations in which the images were divided in two groups (90% for training and 10% for testing), the mean success rate was 96.60% with a standard deviation of 0.67 ...
In order to enable real-time corruption detection of Diffusion Tensor Imaging (DTI) exams, a method consisting of fitting the images’ slices’ spectra and using the data resulting from this process for classification via Support-Vector Machine (SVM) was developed. A set of 6652 slices from five different subjects was used. After 1000 iterations in which the images were divided in two groups (90% for training and 10% for testing), the mean success rate was 96.60% with a standard deviation of 0.67%. For real-time implementation, parallel processing of interweaved slices using two processing cores is recommended. ...
Instituição
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Curso de Engenharia Elétrica.
Coleções
-
TCC Engenharias (5855)
Este item está licenciado na Creative Commons License