Show simple item record

dc.contributor.advisorThom, Lucinéia Heloisapt_BR
dc.contributor.authorFerreira, Renato César Borgespt_BR
dc.date.accessioned2017-04-12T02:25:34Zpt_BR
dc.date.issued2017pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/156635pt_BR
dc.description.abstractPara permitir um efetivo gerenciamento de processos de negócio, o primeiro passo é o desenvolvimento de modelos de processo adequados aos objetivos das organizações. Tais modelos são utilizados para descreverem papéis e responsabilidades dos colaboradores nas organizações. Além disso, a modelagem de processos é de grande importância para documentar, entender e automatizar processos. As organizações, geralmente provêm documentos não estruturados e de difícil entendimento por parte dos analistas. Neste panorama, a modelagem de processos se torna demorada e de alto custo, podendo gerar modelos de processo que estão em desacordo com a realidade prevista pelas organizações. A extração de modelos ou fragmentos de processo a partir de descrições textuais pode contribuir para minimizar o esforço necessário à modelagem de processos. Neste contexto, esta dissertação propõe uma abordagem para identificar elementos de processo de negócio em texto em linguagem natural de forma semiautomática. Baseado no estudo de processamento de linguagem natural, foi definido um conjunto de regras de mapeamento para identificar elementos de processo em descrição textual Além disso, para avaliar as regras de mapeamento e viabilizar a abordagem proposta, foi desenvolvido um protótipo capaz de identificar elementos de processo em texto de forma semiautomática. Para medir o desempenho do protótipo proposto, foram utilizadas métricas de recuperação de informação, tais como precisão, revocação e medida-F. Além disso, foram aplicados dois questionários com o objetivo de verificar a aceitação perante os usuários. As avaliações apresentam resultados promissores. A análise de 70 textos, apresentou, em média, 73,61% de precisão, 70,15% de revocação e 71,82% de medida-F. Além disso, os resultados do primeiro e segundo questionários apresentaram, em média, 91,66% de aceitação dos participantes. A principal contribuição deste trabalho é propor regras de mapeamento para identificar elementos de processo em texto em linguagem natural para auxiliar e minimizar o tempo necessário à modelagem de processos realizada pelos analistas de processo.pt_BR
dc.description.abstractTo enable effective business process management, the first step is the design of appropriate process models to the organization’s objectives. These models are used to describe roles and responsibilities of the employees in an organizations. In addition, business process modeling is very important to report, understand and automate processes. However, the documentation existent in organizations about such processes is mostly unstructured and difficult to be understood by analysts. In this context, process modeling becomes highly time consuming and expensive, generating process models that do not comply with the reality of the organizations. The extracting of process models from textual descriptions may contribute to minimize the effort required in process modeling. In this context, this dissertation proposes a semi-automatic approach to identify process elements in natural language text. Based on the study of natural language processing, it was defined a set of mapping rules to identify process elements in text. In addition, in order to evaluate the mapping rules and to demonstrate the feasibility of the proposed approach, a prototype was developed able to identify process elements in text in a semiautomatic way To measure the performance of the proposed prototype metrics were used to retrieve information such as precision, recall, and F-measure. In addition, two surveys were developed with the purpose of verifying the acceptance of the users. The evaluations present promising results. The analyses of 70 texts presented, on average, 73.61% precision, 70.15% recall and 71.82% F-measure. In addition, the results of the first and second surveys presented on average 91.66% acceptance of the participants. The main contribution of this work is to provide mapping rules for identify process elements in natural language text to support and minimize the time required for process modeling performed by process analysts.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectProcessamento : Linguagem naturalpt_BR
dc.subjectMapping rulesen
dc.subjectProcesso de negóciospt_BR
dc.subjectBusiness process model and notationen
dc.subjectBusiness process managementen
dc.subjectProcess elementen
dc.subjectProcess modelen
dc.subjectNatural language processingen
dc.subjectProcess modelingen
dc.titleUma abordagem semiautomática para identificação de elementos de processo de negócio em texto de linguagem naturalpt_BR
dc.title.alternativeA semi-automatic approach to identify business process elements in natural language text en
dc.typeDissertaçãopt_BR
dc.identifier.nrb001017520pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2017pt_BR
dc.degree.levelmestradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record