Mostrar el registro sencillo del ítem

dc.contributor.advisorDorn, Márciopt_BR
dc.contributor.authorOliveira, Eduardo Spieler dept_BR
dc.date.accessioned2016-12-17T02:17:20Zpt_BR
dc.date.issued2016pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/150205pt_BR
dc.description.abstractO Atracamento Molecular é uma importante ferramenta utilizada no descobrimento de novos fármacos. O atracamento com ligante flexível é um processo computacionalmente custoso devido ao número alto de graus de liberdade do ligante e da rugosidade do espaço de busca conformacional representando a afinidade entre o receptor e uma molécula ligante. O problema é definido como a busca pela solução de menor energia de ligação proteína-ligante. Considerando uma função suficientemente acurada, a solução ótima coincide com a melhor orientação e afinidade entre as moléculas. Assim, o método de busca e a função de energia são partes fundamentais para a resolução do problema. Muitos desafios são enfrentados para a resolução do problema, o tratamento da flexibilidade, algoritmo de amostragem, a exploração do espaço de busca, o cálculo da energia livre entre os átomos, são alguns dos focos estudados. Esta dissertação apresenta uma técnica baseada em um Algoritmo Genético de Chaves Aleatórias Viciadas, incluindo a discretização do espaço de busca e métodos de agrupamento para a multimodalidade do problema de atracamento molecular. A metodologia desenvolvida explora o espaço de busca gerando soluções diversificadas. O método proposto foi testado em uma seleção de complexos proteína-ligante e foi comparado com softwares existentes: AutodockVina e Dockthor. Os resultados foram estatisticamente analisados em termos estruturais. O método se mostrou eficiente quando comparado com outras ferramentas e uma alternativa para o problema de Atracamento Molecular.pt_BR
dc.description.abstractMolecular Docking is a valuable tool for drug discovery. Receptor and flexible Ligand docking is a very computationally expensive process due to a large number of degrees of freedom of the ligand and the roughness of the molecular binding search space. A Molecular Docking simulation starts with a receptor and ligand unbounded structures and the algorithm tests hundreds of thousands of ligands conformations and orientations to find the best receptor-ligand binding affinity by assigning and optimizing an energy function. Despite the advances in the conception of methods and computational strategies for search the best protein-ligand binding affinity, the development of new strategies, the adaptation, and investigation of new approaches and the combination of existing and state-of-the-art computational methods and techniques to the Molecular Docking problem are clearly needed. We developed a Biased Random-Key Genetic Algorithm as a sampling strategy to search the protein-ligand conformational space. The proposed method has been tested on a selection of protein-ligand complexes and compared with existing tools AutodockVina and Dockthor. Compared with other traditional docking software, the proposed method has the best average Root-Mean-Square Deviation. Structural results were statistically analyzed. The proposed method proved to be efficient and a good alternative to the molecular docking problem.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectMolecular dockingen
dc.subjectBioinformáticapt_BR
dc.subjectInformática médicapt_BR
dc.subjectAlgoritmo genéticopt_BR
dc.subjectOtimizaçãopt_BR
dc.titleUm algoritmo genético de chaves aleatórias viciadas para o problema de atracamento molecularpt_BR
dc.title.alternativeA biased random key genetic algorithm for the molecular docking problem en
dc.typeDissertaçãopt_BR
dc.identifier.nrb001008173pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2016pt_BR
dc.degree.levelmestradopt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem