Mostrar registro simples

dc.contributor.advisorEngel, Paulo Martinspt_BR
dc.contributor.authorHernandez, Juliana Delgado Santospt_BR
dc.date.accessioned2007-06-06T17:14:48Zpt_BR
dc.date.issued2001pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/1463pt_BR
dc.description.abstractAs técnicas que formam o campo da Descoberta de Conhecimento em Bases de Dados (DCBD) surgiram devido à necessidade de se tratar grandes volumes de dados. O processo completo de DCBD envolve um elevado grau de subjetividade e de trabalho não totalmente automatizado. Podemos dizer que a fase mais automatizada é a de Mineração de Dados (MD). Uma importante técnica para extração de conhecimentosa partir de dados é a Programação Lógica Indutiva (PLI), que se aplica a tarefas de classificação, induzindo conhecimento na forma da lógica de primeira ordem. A PLI tem demonstrado as vantagens de seu aparato de aprendizado em relação a outras abordagens, como por exemplo, aquelas baseadas em aprendizado proposicional Os seus algorítmos de aprendizado apresentam alta expressividade, porém sofrem com a grande complexidade de seus processos, principalmente o teste de corbertura das variáveis. Por outro lado, as Redes Neurais Artificiais (RNs) introduzem um ótimo desempenho devido à sua natureza paralela. às RNs é que geralmente são "caixas pretas", o que torna difícil a obtenção de um interpretação razoável da estrutura geral da rede na forma de construções lógicas de fácil compreensão Várias abordagens híbridas simbólico-conexionistas (por exemplo, o MNC MAC 890 , KBANN SHA 94 , TOW 94 e o sistema INSS OSO 98 têm sido apresentadas para lidar com este problema, permitindo o aprendizado de conhecimento simbólico através d euma RN. Entretanto, estas abordagens ainda lidam com representações atributo-valor. Neste trabalho é apresentado um modelo que combina a expressividade obtida pela PLI com o desempenho de uma rede neural: A FOLONET (First Order Neural Network).pt_BR
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectBanco : Dadospt_BR
dc.subjectMineracao : Dadospt_BR
dc.subjectRedes neuraispt_BR
dc.subjectProgramação lógica indutivapt_BR
dc.titleAprendizado relacional por um modelo neuralpt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb000143740pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2001pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples