Formulação analítica para solução do problema de ordenada discreta unidimensional
Fecha
1992Nivel académico
Doctorado
Tipo
Resumo
Nete trabalho é apresentada uma solução analílica para o problema de ordenada discreta unidimensional e multigrupo de transporle de neutrons em simetria planar. A idéia básica da formulação proposta consiste na aplicação da transformada de Laplace na equação de ordenada discreta. Para a solução do sistema linear resultante, uma solução explícila para a matriz lnversa é estabelecida. Dessa forma, o fluxo angular é obtido, por inversão analítica, em termos do fluxo angular em x=O. Essa formulação ...
Nete trabalho é apresentada uma solução analílica para o problema de ordenada discreta unidimensional e multigrupo de transporle de neutrons em simetria planar. A idéia básica da formulação proposta consiste na aplicação da transformada de Laplace na equação de ordenada discreta. Para a solução do sistema linear resultante, uma solução explícila para a matriz lnversa é estabelecida. Dessa forma, o fluxo angular é obtido, por inversão analítica, em termos do fluxo angular em x=O. Essa formulação é aplicada a problemas de domínio finito e semi-infinito. No primeiro caso, os valores de fluxo angular desconhecidos na fronteira em x=O, são determinados a partir dos valores conhecidos do fluxo angular em x=a; no segundo caso é usada a condição de que o fluxo angular é limilado no infinito. Foram tratados problemas homogêneos e heterogêneos para a placa plana com um grupo de neutrons e multigrupo.O problema inverso, que consiste na determinação do fluxo incidente na fronteira a partir de valores do fluxo escalar no interior do domínio, também foi resolvido. Os resullados obtidos para os problemas acima descritos, apresentaram uma boa comparação com os resultados disponíveis na literatura. ...
Institución
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia Mecânica.
Colecciones
-
Ingeniería (7410)Ingeniería Mecánica (826)
Este ítem está licenciado en la Creative Commons License