Mostrar registro simples

dc.contributor.advisorHaertel, Vitor Francisco de Araújopt_BR
dc.contributor.authorBatista, Marlos Henriquept_BR
dc.date.accessioned2007-11-30T05:12:07Zpt_BR
dc.date.issued2006pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/11235pt_BR
dc.description.abstractA alta resolução espacial, incorporada aos novos sensores remotos imageadores, apresenta um cenário que promove uma captura excessiva das variações espectrais das classes, funcionando mais como ruído e aumentando desnecessariamente a variância interna das classes. Estas características geram prejuízos no processo de classificação, pois aumentam o erro de Bayes e conseqüentemente pioram a acurácia da classificação. Por isso, a necessidade de abandonar o pixel como unidade de classificação e passar adotar regiões obtidas por segmentação prévia da imagem. Buscando introduzir no processo de classificação variáveis que pudessem se adequar a essas novas características, o presente estudo propõe-se investigar a utilização de atributos de forma e textura em adição aos atributos espectrais. Para poder avaliar a eficácia de cada atributo no processo de classificação, será utilizado um algoritmo de classificação em múltiplos estágios e entre os possíveis critérios de separabilidade será utilizada a distância de Bhattacharrya. A aplicação do algoritmo proposto foi testado sobre os dados imagem do sistema Quickbird e a implementação em ambiente Matlab.pt_BR
dc.description.abstractHigh spatial resolution image data are becoming increasingly available to the users community. The obvious advantages introduced by high resolution data also pose some new challenges. Chief among them is the problem of digital image classification. The traditional pixel based classification procedures frequently yield poor results when applied to high spatial resolution image data. The small ground pixel size frequently captures an unnecessary high level of detail resulting in large class-variances which increase the confusion among classes. In this context, it is normally more convenient to replace individual pixels by image segments, also known as objects, as individuals to be labeled according with the existing classes. One of the main advantages of employing smaller pixels is the ability of capturing spatial information such as shape and texture which may be conveniently added to the spectral data to increase the accuracy in the resulting thematic map. In this study, it is investigated the combined use of spectral and spatial attributes in a classifier. As the data dimensionality may increase substantially due to the larger amount of data used, a feature extraction process are used in the classification procedure, rather than the original spectral and spatial data themselves. A binary decision tree classifier is used in this study to label every image segment. In a binary tree, only two classes are considered at a time on every node. The feature extraction procedure has to optimize the distance between a pair of classes. In this study, the criterion used to define the linear transformation for feature extraction is the Bhattacharyya distance. The proposed methodology is tested using high spatial resolution image data acquired by the sensor system Quickbird. Results are presented and commented.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectSensoriamento remotopt_BR
dc.subjectImagens digitaispt_BR
dc.titleClassificação hierárquica orientada a objeto em imagens de alta resolução espacial empregando atributos espaciais e espectraispt_BR
dc.title.alternativeHierarchical object-oriented classification for images of high spatial resolution using spatials and spectrals datas en
dc.typeDissertaçãopt_BR
dc.identifier.nrb000603585pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentCentro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologiapt_BR
dc.degree.programPrograma de Pós-Graduação em Sensoriamento Remotopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2007pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples