Mostrar registro simples

dc.contributor.advisorSecchi, Argimiro Resendept_BR
dc.contributor.authorAlmeida Neto, Euclidespt_BR
dc.date.accessioned2012-01-06T01:19:38Zpt_BR
dc.date.issued2011pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/36008pt_BR
dc.description.abstractAs constantes pressões por redução de margem de lucro, melhoria de qualidade de produtos e segurança operacional que a indústria de processamento vem sofrendo, tem levado as mesmas a utilizarem ferramentas especializadas de otimização de processos. Nas décadas de 1980 e 1990, esta indústria investiu fortemente na utilização de ferramentas de otimização estacionária em tempo real (RTO) nas formas online e offline. Esta tecnologia já atingiu o seu grau de maturidade. Porém está limitada pelas suas características estacionárias, não tendo capacidade de otimizar processos diante das perturbações freqüentes, tais como alterações de qualidade e quantidade de carga, transições decorrentes de alterações de programação de produção ou de receita de uma produção em batelada ou semi-batelada, dentre outros. Para cobrir este espaço, a otimização dinâmica em tempo real (DRTO) é a tecnologia adequada para reduzir a quantidade de produtos fora de especificação e otimizar o lucro operacional diante destas perturbações. Porém, esta tecnologia ainda não atingiu o seu grau de maturidade, tendo ferramentas comerciais apenas na sua versão offline. Com o objetivo de contribuir com a consolidação desta tecnologia, propõe-se estudar e desenvolver uma arquitetura de sistema de DRTO para operar nas plantas de processo, promover melhorias conceituais nesta tecnologia, e desenvolver uma ferramenta de diagnóstico e sintonia de DRTO. Esta estrutura é bem completa e fornece a flexibilidade necessária para uso industrial. A ferramenta de diagnóstico permite resolver os problemas que ocorrerem ao longo do uso do DRTO. Além disso, é apresentada uma nova metodologia de análise e solução de inviabilidades, baseada em otimização multiobjetivos aplicada à otimização dinâmica. Esta técnica pode ser utilizada tanto online quanto offline, para diagnóstico, e na solução de problemas de otimização dinâmica, conferindo mais robustez ao DRTO, evitando insucessos do otimizador.pt_BR
dc.description.abstractConsidering the constant pressures for profit margins reduction, improvement of products quality and operational safety, that the processing industry has been submitted, has led them to the use of specialized tools of processes optimization. In the 1980 and 1990 decades, this industry has invested strongly in the use of stationary real-time optimization tools (RTO), in the online and offline forms. This technology already reached its degree of maturity, but limited to its stationary characteristics, having no ability to optimize processes due to frequent disturbances, such as quality and feed flows transitions, consequence of frequent changes in the production scheduling or recipes in batch or semibatch operations, and others. To cover this space, the dynamic real-time optimization (DRTO) is the appropriate technology to reduce the off-spec production and optimize the operational profit when the process is submitted to these disturbances. However, this technology has not reached its maturity, having only commercial tools available only in yuor offline version. In order to contribute to the consolidation of this technology, it is proposed to study and develop a DRTO system architecture to operate in process plants, to promote a conceptual improvements in this technology, and to develop a DRTO diagnostic and tuning tool. This structure is quite complete and provides the flexibility required for industrial application. The diagnostic tool allows us to solve problems that occur during the use of the DRTO system. In addition, a new methodology for infeasibility analysis and solution in DAOP is proposed here, and it is based on the solution of the multiobjective dynamic optimization. This technique can be used in online and offline modes, for diagnostics and troubleshooting dynamic optimization problems, giving more robustness to the DRTO systems, avoiding some optimizer failures.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectOtimizaçãopt_BR
dc.subjectControle de processos químicospt_BR
dc.subjectControle ótimopt_BR
dc.titleOtimização dinâmica em tempo real : arquitetura de software, diagnóstico e análise de inviabilidadespt_BR
dc.typeTesept_BR
dc.contributor.advisor-coBiegler, Lorenz T.pt_BR
dc.contributor.advisor-coMarquardt, Wolfgangpt_BR
dc.identifier.nrb000795284pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.programPrograma de Pós-Graduação em Engenharia Químicapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2011pt_BR
dc.degree.leveldoutoradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples