A note on jacobson rings and polynomial rings
dc.contributor.author | Ferrero, Miguel Angel Alberto | pt_BR |
dc.contributor.author | Parmenter, Michael M. | pt_BR |
dc.date.accessioned | 2011-01-26T05:59:08Z | pt_BR |
dc.date.issued | 1989 | pt_BR |
dc.identifier.issn | 0002-9939 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/27483 | pt_BR |
dc.description.abstract | As is well known, if R is a ring in which every prime ideal is an intersection of primitive ideals, the same is true of R[X] . The purpose of this paper is to give a general theorem which shows that the above result remains true when rnany other classes of prime ideals are considered in place of prirnitive ideals. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Proceedings of the American Mathematical Society. Providence, RI. Vol. 105, no. 2 (feb. 1989), p. 281-286. | pt_BR |
dc.rights | Open Access | en |
dc.subject | Ideais primos | pt_BR |
dc.subject | Anéis polinomiais | pt_BR |
dc.subject | Aneis jacobianos | pt_BR |
dc.subject | Aneis associativos | pt_BR |
dc.title | A note on jacobson rings and polynomial rings | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000017580 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
![](/themes/Mirage2Novo//images/lume/cc.png)
-
Artigos de Periódicos (41542)Ciências Exatas e da Terra (6257)