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ABSTRACT. AS is well known, if R is a ring in which every prime ideal is an 
intersection of primitive ideals, the same is true of R [ X ]  . The purpose of this 
paper is to give a general theorem which shows that the above result remains true 
when rnany other classes of prime ideals are considered in place of prirnitive 
ideals. 

Throughout this paper we assume that R is a ring with identity element and 
R[X] is the polynomial ring over R in an indeterminate X . A ring R is said 
to be a Jacobson ring if every prime ideal of R is an intersection of primitive 
(either left or right) ideals. In [7], Watters proved that if R is a Jacobson ring, 
the polynomial ring R[X] is also a Jacobson ring. A similar result also holds for 
Brown-McCoy rings [8], i.e., rings in which every prime ideal is an intersection 
of maximal ideals. 

In this note, d will always denote a class of prime rings. We say that an 
ideal P of R is an M-ideal if R / P  E d . When every prime ideal of R is 
an intersection of d-ideals, the ring R is said to be an M-Jacobson ring. For 
example, if d is the class of primitive (simple) rings, then an M-Jacobson 
ring is a Jacobson (Brown-McCoy) ring. 

The main purpose of this paper is to prove the following 

Theorem 5. Assume that M is a class of prime rings satisfiing condition (A). 
If R is an d-Jacobson ring, then so is R[X] . 

Condition (A) is defined near the beginning of $2. Since primitive (simple) 
rings satisfy this condition, the above theorem includes as particular cases the 
results in [7 and 81. However, we show that many other classes of prime rings 
satisfy condition (A) as well. Some examples include prime Noetherian rings, 
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strongly prime rings, prime nonsingular rings and prime Goldie rings. These 
cases, as well as others, are studied in the latter part of $2. 

Independent of the above, we offer in $ 1 a short direct proof of the Jacobson 
ring result from [7]. Our purpose here is twofold. First, the argument differs 
from that of Watters and we feel it should be noted somewhere. Secondly, some 
of the ideas in $1 are also required in $2. 

Let us set some notation and terminology. If I is an ideal (right ideal) of 
R[X] , then by T(I)  we denote the ideal (right ideal) of R consisting of O and 
a11 the leading coefficients of a11 the polynomials of minimal degree in I .  For 
f E R[X] , a f denotes the degree of f and lc( f )  the leading coefficient of 
f . We set 

Min(I) = Min{af: O # f E I}.  

Finally, an ideal P of R[X] will be called R-disjoint if P # O and P n R  = 0 .  

In this section we will give a brief argument showing that if R is a Jacobson 
ring, then R[X] is also a Jacobson ring. Crucial to our proof is the follow- 
ing lemma, which will be required also in $2. We are indebted to the referee 
for pointing out that this lemma is due to Bergman (unpublished) and that 
published proofs have appeared in severa1 places (e.g . [6, Corollary 2.131). 

Lemma 1. Let R be a prime ring and P an R-disjoint ideal of R[X] . The 
following are equivalent: 

(i) P is a prime ideal of R[X] . 
(ii) P is maximal in the set of R-disjoint ideals of R[X] . 

We now prove the result. 

Proposition 2 (cf. [7]). If R is a Jacobson ring, then R[X] is a Jacobson ring. 

Proof. Let P be a prime ideal of R[X]. By factoring out P n R we may 
assume that P n R = O. We wish to prove that J(R[X]/P) = 0 .  

If P = 0 ,  then J(R[X]/P) = J(R[X]) c J(R)[X] = O [ I ] ,  since J ( R )  = O 
by the assumption. 

Assume that P # O and J(R[X]/P) = I/P # O .  By Lemma 1, we must 
have I n R # O. We claim that ( I  n R).r(P) c J ( R )  . Once this is established, 
the proof is complete by contradiction, since J ( R )  = O, T(P) # O and R is 
prime. From this point on, our argument differs from that of Watters. 

Let a E ( I  n R ) T ( P ) .  Since a E I ,  we must have a + g + a g  E P for 
some g E R[X]. This means that g = a(-g - 1) + p for some p E P ,  so 
a + h +ah E P where h = a(-g - 1) E .r(P)[X] and ah I a g  . If ah < Min(P) 
then we must have a + c + ac = O where c is the constant t e m  in h . 

If ah = m 2 Min(P) = n ,  then let f be a polynomial of minimal degree 
in P which has the same leading coefficient as h .  Consider k = h - xrn-" f 
and note that ak < ah and a + k + ak = a + h + ah (mod P )  . Continuing this 
reduction we obtain a right quasi-inverse for a modulo P , which is of degree 
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less than n . So as above we have that a is right quasi-invertible in R .  The 
proof is complete. 

2. MAIN RESULTS 

We begin this section with the following key lemma 

Lemma 3. Assume that P is an R-disjoint prime ideal of R [ X ]  and Q is 
a nonzero prime ideal or a maximal  right ideal of R .  If  r ( P )  $ Q ,  then 
( P + Q [ X ] ) n R = Q .  

Proof. Assume to the contrary that there exists r E R - Q such that r = h ,  +h,  , 
for some h ,  E P and h, E Q [ X ] .  It follows that there exists g = a m x m  + 

. . + a,  E P with a ,  E Q , i > 1 and a,  I$ Q . Take such a g of minimal 
degree with respect to these conditions and suppose that f = b , x n  + . . . + 
b, is a polynomial of minimal degree in P . If b, I$ Q ,  under either of 
the assumptions there exists c E R such that a,cb, 4 Q .  Hence gcb, - 
~ ~ - " a , c  f E P , which contradicts the minimality of d g  . 

A class d of prime rings is said to satisfy condition ( A )  if the following 
holds: 

( A )  If R E d , then R [ X ] / P  E d for every R-disjoint prime ideal P of 
R [ X l .  

It is clear using Lemma 1 that the class of simple rings satisfies (A), and we 
shall show in Proposition 7 that the class of primitive rings satisfies ( A )  as well. 
Hence Theorem 5 is indeed a generalization of results in [7 and 81. However, 
there are many other classes in which (A) holds. For some of these, the proof 
that (A) is satisfied is very easy, for example prime Noetherian rings, simple 
Artinian rings, fields, finite fields, prime rings which are nil (locally nilpotent) 
semisimple and G-rings. For other classes, the verification of condition ( A )  is 
less obvious, and will be given later on. 

We require one more lemma. Denote by & ( R )  the intersection of a11 prime 
ideals P of R such that R I P  E d . 
Lemma 4. Assume that d satisjes condition ( A )  and R E d . Then d ( R [ X ] )  
= o .  
Proof. Let Q be the Martindale ring of quotients of R and C the centre of 
Q . Then C is a field because R is prime. Take a monic irreducible polynomial 
f E C [ X ]  and put P; = f Q [ X ]  . If M is a maximal Q-disjoint ideal of Q [ X ]  
with M 2 P; and h = a ,  X"  + . . . + a, E M is a polynomial of minimal degree 
in M ,  we have a,qh - hqa, = O  for every q E Q . Hence anqal - algan = O  
for a11 q E Q and i = O ,  . . .  , n - 1 .  By [5 ,  Lemma 1.3.21 there exists c, E C 
such that a ,  = c,an , i = O ,  . . . , n - 1 . Then h = h,a, with h, E C [ X ]  . Since 
hoQIX]an L M and M is prime by Lemma 1, we have h, E M .  If g E M ,  
then g = ph, + r ,  where p , r are in Q [ X ]  and dr < n . So r = g - ph, E M 
and it follows that r = O .  We get M = h , Q [ X ]  > P; and thus f E h , Q [ X ]  . 
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Since f is irreducible, f = h. and so P; = M is a prime ideal. Hence 
Pf = P; n R[X] is also a prime ideal [3, Theorem 1.41 and R-disjoint. By the 
assumption, R[X]/Pf is in d and since nf Pf = 0 ,  the result follows. 

Now we can prove our main result. 

Proof of Theorem 5. Suppose that P is a prime ideal of R[X] . By factoring out 
P n R  , we may assume that P n R  = O . Then R is prime and by the assumption 
O = n,,,{Q, 4 R: R/Qi E d )  . By Lemma 4, Q,[X] is an intersection of d- 
ideals of R[X] , and since n,,, Q,[X] = O, it follows that d ( R [ X ] )  = O. This 
takes care of the case P = O, so Lemma 1 tells us that we may assume that P 
is an ideal maximal with respect to P n R = 0 .  

Now, put I = {i E L: (P + Q,[X]) n R = Q,) and J = L - I .  We have 
O = (n,,, Q,) n (n,,, Q,) and so the primality of R allows us to conclude that 
n,,, Q, = O, since by Lemma 3, n,,, Q, 2 7(P) # O .  For every i E I ,  choose 
an ideal Pi of R[X] maximal with respect to P, > P + Q,[X] and P, n R = Qi . 
Condition (A) tells us that R[X]/Pi E d and since (n,,, Pi)n R = n,,, Q, = O 
and P c n,,, Pi , we conclude that P = n,,, P, as required. 

Remark 1. Condition (A) could be weakened by requiring that d (R[X]/P) = O 
instead of R[X]/P E for every R-disjoint prime ideal P of R[X] . With 
this apparently weaker condition, the above proof still holds, but we do not know 
any natural example of a class which satisfies this condition but not condition 
(A). 

Remark 2. The essential difference between our proof of Theorem 5 and the 
original argument of Watters in [7, Lemma 41 is that Lemma 3 allows us to 
apply the going up argument to Qi , not only when Qi is a maximal right ideal 
but also when Qi is a prime ideal. 

Earlier in this section, we noted a number of classes of prime rings for which 
condition (A) trivially holds. Now we will verify (A) for less obvious cases. 

Proposition 6,. The following classes of prime rings satisfv condition (A): 
(i) (right) prime nonsingular rings, 
(ii) (right) strongly prime rings. 

Proof. These cases are verified in [3, (Lemmas 3.5 and 3.2)]. However, for the 
sake of completeness, we will present here a short argument, different from that 
in [3], for the case (i). We note that case (ii) could be handled similarly. 

Assume that R is a prime nonsingular ring and let P be an R-disjoint prime 
ideal of R[X]. By way of contradiction we assume that the (right) singular 
ideal Z(R[X]/ P) = I/P # O . By Lemma 1, I n R # O and we may choose 
O # a E I n R .  I t isenoughtoseethat  a E Z ( R ) .  

Let J be a nonzero right ideal of R .  Then J[X] is a right ideal of R[X] 
and so there exists g E J[X] such that g $ P and a g  E P . Take such a g 
of minimal degree m . If m < Min(P) , a g  = O and agi = O for any nonzero 
coefficient of g . Since g, E J we are done if we show that m 2 Min(P) is not 
possible. In fact, in this case choose a nonzero polynomial of minimal degree 
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n in P and let lc(g) = g, and lc( f )  = f, . Since g 4 P , there exists r E R 
with grf, 4 P . This means that g1 = grf, - gmrfxm-" I$ P . But dgl < dg 
and agl E P , which is a contradiction. 

Proposition 7. The class of ( right ) primitive rings satisjes condition (A). 

Proof. Let P be an R-disjoint prime ideal of R[X] and let Q be a maximal 
right ideal of R with (Q : R) = {r E R: Rr  Q) = O. It follows that 
.r(P) $ Q and ( P  + Q[X]) n R = Q by Lemma 3. Take a right ideal M of 
R[X] maximal with respect to M 2 P + Q[X] and M n R = Q . Then M is 
a maximal right ideal of R[X] such that ( M  : R[X]) n R = (Q : R) = 0 .  
Since ( M  : R[X]) 2 P it follows that ( M  : R[X]) = P and P is primitive. 

Finally, we show that the class of prime rings with finite (right) Goldie di- 
mension also satisfies (A). First we need the following 

Lemma 8. Suppose that P is an R-disjoint prime ideal of R[X] and I 2 P is 
a right ideal such that Min(I) = Min(P) . Then I = P . 
Proof. Let f E P be a polynomial of minimal degree n > 1 with lc( f )  = a .  
If g = b n x n  + . . . + b, is of minimal degree in I ,  then gra - b,rf E I for 
every r E R .  Minimality tells us that gra - b,rf = O, so gR[X]a c P and 
hence g E P . Now, if h E I ,  induction on dh gives us that h E P . 
Proposition 9. The class of prime rings with jnite ( right ) Goldie dimension 
satisjes (A). 

Proof. Let P be an R-disjoint prime ideal of R[X] and suppose that is 
an infinite family of right ideals of R[X] with Ii 1 P for a11 i and C,,,(I,/P) 
= CiEr $(Ii/P). We will reach a contradiction. 

We have Min(I,) < Min(P) for each i E I ,  by Lemma 8. So there exists 
an infinite subfamily for which the values of Min(Ii) are a11 equal. We relabel 
this subfamily as I, , I, , . . . . Hence Min(I,) = Min(12) = . . . < Min(P) . Put 
s = Min(I,) , i = 1 , 2  , . . . . 
Case I. Assume that there exists an integer m such that Min(I,) = 
Min(I, + I,+,) = . . . = Min(I, + . . . + I,+,) , for a11 n . In this case con- 
sider the right ideals r(I,), r(I,+,) , . . . of R .  By again relabelling, we may 
assume there exists O # a ,  E z(I ,)  n r(Ii) since R is of finite Goldie 
dimension. Hence a ,  = a, + . . . + a, where a j  E r(I j)  for 1 5 j 5 t . Since 
Min(Ii) = s for a11 i ,  there must exist polynomials f i  = a i x S  + hi E l i ,  where 
8hi < S .  Since g = f, - (f2 + + f , )  E I, + . . .  + I, and dg < s ,  we have 
g = O. Hence f, = f2 + . . . + f ,  E I, n C:=, 5 = P and hence f, = O. This 
contradicts a ,  # O, so the result is established in this case. 

Case 11. We suppose that for every rn > 1 there exists some n > rn such 
that Min(I, + . . . + I,'") < Min(I,) . So there exists j > 2 such that 
Min(I, + . . . + i,) < S .  Put H, = I, + . . . + 5 and consider 1; = 5+, for 
k > 1 . Hence there exists t > 1 such that ~ i n ( 1 ;  +. . . +Ir1) < ~ i n ( 1 ; )  = s and 
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write H, = I! + . . . 
L Lm 

such that C:, Hi/P 
Now, we repeat the 

+ . By induction we form an infinite sequence {Hl) 
= Cri  $(H,/P) and such that Min(Hi) < S .  

entire procedure with the {H,) , either reaching a contra- 
diction by Case I or reducing the degree again. But if we have reduced the degree 
to Min(Hi) = 0 ,  then we are done because R has finite Goldie dimension and 
C:, (H, n R )  = C:, $(Hi n R) in this case. 

The following case is already contained in the literature [2, Lemma 2.31. 
However, it is also a direct consequence of Proposition 6(i) and Proposition 9. 

Corollary 10. The class of prime right Goldie rings satisjes condition (A). 

Proof. It is enough to recall that a prime ring is right Goldie if and only if it is 
nonsingular and has finite Goldie dimension [4, Corollary 3.321. 

Remark 1. There are dual proofs, of course, for left conditions, i.e., left strongly 
prime rings, etc. 

Remark 2. We would like to thank the referee for pointing out that the class 
of completely prime rings and the class of division rings both fail to satisfy 
condition (A). This can be seen by taking R to be the division ring of real 
quaternions and P the prime ideal ( x 2  + I ) ,  since R[X]/P E M2(C). 

Remark 3. We were unable to decide whether the following classes of prime 
rings satisfy condition (A). 

(i) prime (von Neumann) regular rings, 
(ii) prime rings with no nonzero (von Neumann) regular ideals, 
(iii) prime rings which satisfy ACC on right annihilators. 

Added in Proof. The results of [3] will appear in another paper by the author 
elsewhere. 
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