Mostrar registro simples

dc.contributor.authorVeiga, Rafael Valentept_BR
dc.contributor.authorFaccini, Lavinia Schulerpt_BR
dc.contributor.authorFrança, Giovanny Vinícius Araújo dept_BR
dc.contributor.authorAndrade, Roberto Fernandes Silvapt_BR
dc.contributor.authorTeixeira, Maria Gloriapt_BR
dc.contributor.authorCosta, Larissa Catharinapt_BR
dc.contributor.authorPaixão, Enny Santos dapt_BR
dc.contributor.authorCosta, Maria da Conceição Nascimentopt_BR
dc.contributor.authorBarreto, Mauricio Limapt_BR
dc.contributor.authorOliveira, Juliane Fonseca dept_BR
dc.contributor.authorOliveira, Wanderson Kleber dept_BR
dc.contributor.authorCardim, Luciana Lobatopt_BR
dc.contributor.authorRodrigues, Moreno Magalhães de Souzapt_BR
dc.date.accessioned2023-11-11T03:25:29Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.issn2045-2322pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/267032pt_BR
dc.description.abstractZika virus was responsible for the microcephaly epidemic in Brazil which began in October 2015 and brought great challenges to the scientific community and health professionals in terms of diagnosis and classification. Due to the difficulties in correctly identifying Zika cases, it is necessary to develop an automatic procedure to classify the probability of a CZS case from the clinical data. This work presents a machine learning algorithm capable of achieving this from structured and unstructured available data. The proposed algorithm reached 83% accuracy with textual information in medical records and image reports and 76% accuracy in classifying data without textual information. Therefore, the proposed algorithm has the potential to classify CZS cases in order to clarify the real effects of this epidemic, as well as to contribute to health surveillance in monitoring possible future epidemics.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofScientific reports. London. Vol. 11 (2021), e6770, 7 p.pt_BR
dc.rightsOpen Accessen
dc.subjectZika viruspt_BR
dc.subjectMicrocefaliapt_BR
dc.subjectCiência da computaçãopt_BR
dc.subjectInfecção viralpt_BR
dc.subjectAprendizado de máquinapt_BR
dc.titleClassification algorithm for congenital Zika Syndrome: characterizations, diagnosis and validationpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001153745pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples