Mostrar registro simples

dc.contributor.advisorVeit, Hugo Marcelopt_BR
dc.contributor.authorCamargo, Priscila Silva Silveirapt_BR
dc.date.accessioned2022-02-10T04:34:57Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/234930pt_BR
dc.description.abstractO crescente uso da energia fotovoltaica (FV) demanda soluções tecnológicas para os módulos solares em fim-de-vida. Diversas pesquisas científicas visando a reciclagem de módulos FV são executadas, baseadas em tratamentos mecânicos, elétricos, térmicos e químicos. Contudo, os processos de separação, concentração e recuperação de materiais a partir do resíduo FV ainda não estão totalmente definidos e estudados, existindo lacunas que precisam ser exploradas. Sob esses aspectos, este trabalho focou em aprofundar o uso do tratamento térmico e mecânico para tratar unidades de módulos FV de silício cristalino (c-Si, primeira geração), sem cominuição, que foram cortadas em amostras de 8 x 8 cm. O módulo sem caixa de junção e moldura de alumínio, também conhecido como laminado FV, foi caracterizado quimicamente. As técnicas aplicadas foram Análise de Fluorescência de Raios X para identificar metais, e Espectroscopia no Infravermelho por Transformada de Fourier para polímeros. Parâmetros como atmosfera (oxidante ou inerte), temperatura de decomposição e massa percentual polimérica foram estudados por meio de Análise Termogravimétrica. A primeira rota de tratamento desenvolvida, Rota 1, testou quatros tempos de tratamento térmico a 500 ºC (30, 60, 90 e 120 minutos) e constatou que 90 minutos degradaram 13,62 ± 0,02% da massa original, cerca de 68% da carga polimérica, não havendo diferença estatística com 120 minutos. Por meio de segregação manual após o tratamento aplicado, a Rota 1 com 90 minutos obteve 3 frações de materiais, cujos percentuais em relação ao laminado original foram: 78,96 ± 0,04% de vidro (VD); 1,04 ± 0,11% de fitas de cobre com chumbo e estanho (FC); 6,38 ± 0,16% de fragmentos de silício, prata e resíduos poliméricos (SP). O restante da massa, composta por polímeros, foi degradado termicamente na Rota 1. A fração SP90min, rica em silício (46,62 ± 0,20%) e prata (0,28 ± 0,05%), que foi obtida teve 20 vezes mais prata que o laminado moído (0,014 ± 0,001%) e 30 vezes mais que um minério de alta concentração (0,01%). Por outro lado, a Rota 2 propôs um pré-tratamento mecânico em que o backsheet (composto por PET, EVA e PVF) foi removido com fresa, cerca de 10,32 ± 0,92% da massa do laminado, a fim de diminuir o tempo de tratamento térmico e evitar a emissão de HF, benzeno, dioxinas e outros compostos provenientes da queima desses polímeros. Por meio da Rota 2, a separação dos materiais e a decomposição total da carga polimérica foi alcançada com apenas 20 minutos de tratamento térmico, não havendo diferença estatística com 30 minutos. A aplicação da Rota 2 com 20 minutos, com a segregação manual, obteve em média 85,73 ± 0,71% de VD, 0,92 ± 0,05% de FC e 4,76 ± 0,38% de SP, em relação à massa do laminado original. A fração FC20min apresentou 59,56 ± 14,16% de Cu, 21,74 ± 5,76% de Pb e 14,30 ± 7,46% de Sn. A fração SP20min apresentou 68,04 ± 1,97% de Si e 0,43 ± 0,05% de Ag, isto é, teve 30 vezes mais prata que o laminado moído e 40 vezes mais que um minério de alta concentração. A Rota 2 com 22% do tempo de tratamento térmico usado na Rota 1, removeu mais polímeros e concentrou mais prata e silício, além de ter evitado a queima de compostos fluorados. Dessa forma, a Rota 2 propiciou a separação e concentração de matérias-primas provenientes de um resíduo perigoso, além de ser mais interessante em sentido econômico e ambiental que a Rota 1.pt_BR
dc.description.abstractThe increasing use of photovoltaic (PV) energy demands technological solutions for end-of-life solar modules. Several scientific kinds of research aiming at recycling PV modules are performed, based on mechanical, electrical, thermal and chemical treatments. However, the processes of separation, concentration and recovery of materials from PV waste are not yet fully defined and studied, and some gaps need to be explored. Under these aspects, this work focused on further exploring the use of thermal and mechanical treatment to treat crystalline silicon PV module units (c-Si, first-generation), without comminution, which was cut into 8 x 8 cm samples. The module without junction box and aluminum frame, also known as PV laminate, was chemically characterized. The techniques applied were X-ray Fluorescence Analysis to identify metals and Fourier Transform Infrared Spectroscopy for polymers. Parameters such as atmosphere (oxidizing or inert), decomposition temperature, and polymer percentage mass were studied by Thermogravimetric Analysis. The first treatment route developed, Route 1, tested four thermal treatment times at 500 ºC (30, 60, 90 and 120 minutes) and found that 90 minutes degraded 13.62 ± 0.02% of the original mass, about 68% of the polymeric load, with no statistical difference with 120 minutes. By manual segregation after the applied treatment, Route 1 with 90 minutes obtained 3 fractions of materials, whose percentages in relation to the original laminate were: 78.96 ± 0.04% of glass (GL); 1.04 ± 0.11% of copper ribbons with lead and tin (CR); 6.38 ± 0.16% of fragments of silicon, silver and polymeric residues (SS). The remaining mass, composed of polymers, was thermally degraded in Route 1. The SS90min obtained fraction, rich in silicon (46.62 ± 0.20%) and silver (0.28 ± 0.05%), had 20 times more silver than the ground laminate (0.014 ± 0.001%) and 30 times more than a high concentration ore (0.01%). On the other hand, Route 2 proposed a mechanical pre-treatment in which the backsheet (composed of PET, EVA and PVF) was removed with a milling machine, about 10.32 ± 0.92% of the laminate mass, in order to decrease the thermal treatment time and avoid the emission of HF, benzene, dioxins and other compounds from the burning of these polymers. Through Route 2, the separation of the materials and the total decomposition of the polymeric load was achieved with only 20 minutes of thermal treatment, and there was no statistical difference with 30 minutes. The application of Route 2 with 20 minutes with manual segregation obtained on average 85.73 ± 0.71% of GL, 0.92 ± 0.05% of CR and 4.76 ± 0.38% of SS, in relation to the mass of the original laminate. The CR20min fraction presented 59.56 ± 14.16% Cu, 21.74 ± 5.76% Pb and 14.30 ± 7.46% Sn. The SS20min fraction showed 68.04 ± 1.97% Si and 0.43 ± 0.05% Ag, that is, it had 30 times more silver than the ground laminate and 40 times more than a high concentration ore. Route 2 with 22% of the thermal treatment time used in Route 1, removed more polymers and concentrated more silver and silicon, and avoided the burning of fluorinated compounds. Thus, Route 2 provided the separation and concentration of raw materials from hazardous waste and was more economically and environmentally interesting than Route 1.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectMódulo fotovoltaicopt_BR
dc.subjectWEEE recyclingen
dc.subjectCrystalline silicon photovoltaic modulesen
dc.subjectResíduos eletrônicospt_BR
dc.subjectReciclagempt_BR
dc.subjectThermal and mechanical processesen
dc.subjectMetais : Recuperaçãopt_BR
dc.subjectMetal recoveryen
dc.subjectPolymer removalen
dc.titleReciclagem de módulos fotovoltaicos de silício cristalino : separação e concentração de materiaispt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor-coDias, Pablo Ribeiropt_BR
dc.identifier.nrb001136954pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.programPrograma de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiaispt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2021pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples