Mostrar el registro sencillo del ítem

dc.contributor.advisorAnzanello, Michel Josépt_BR
dc.contributor.authorYamashita, Gabrielli Harumipt_BR
dc.date.accessioned2021-07-10T04:51:29Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/223535pt_BR
dc.description.abstractA seleção de variáveis é uma etapa importante para a análise de dados, visto que identifica os subconjuntos de variáveis mais informativas para a construção de modelos precisos de classificação e predição. Além disso, a seleção de variáveis facilita a interpretação e análise dos modelos obtidos, potencialmente reduzindo o tempo computacional de geração dos modelos e o custo/tempo para obtenção das amostras. Neste contexto, a presente tese apresenta proposições inovadoras de abordagens com vistas à seleção de variáveis para classificação e predição de propriedades de amostras de produtos diversos. Tais abordagens são abordadas em três artigos apresentados nesta tese, com intuito de melhorar a precisão dos modelos de classificação e predição em diferentes áreas. No primeiro artigo, integram-se índices de importância de variáveis a sistemáticas de classificação hierárquica para categorizar amostras de espumantes de acordo com seu país de origem. No segundo artigo, para selecionar as variáveis mais informativas para a predição de amostras via PLS, propõe-se um índice de importância de variáveis baseado na Lei de Lambert-Beer combinado a um processo iterativo de seleção do tipo forward. Por fim, o terceiro artigo utilizou cluster de variáveis espectrais e índice de importância para selecionar as variáveis que produzem modelos de predição mais consistentes. Em todos os artigos dessa tese, os resultados obtidos pelos métodos propostos foram superiores quando comparados a outros métodos tradicionais da literatura voltados à identificação das variáveis mais informativas.pt_BR
dc.description.abstractVariable selection is an important step in data analysis, since it identifies the most informative subsets of variables for build accurate classification and prediction models. In addition, variable selection improves the interpretation and analysis of obtained models, reduces the computational time to build models and reduces the obtained samples costs. In this context, this thesis presents propositions for a variable selection method aiming to classifying and predicting sample properties. Such methods are presented in three papers in this thesis, in order to improve the classification and prediction accuracy in different areas. In first paper, we applied variable importance index coupled with a hierarchical classification technique to identify the country of origin of sparkling wines. In second paper, to select the most informative variables for prediction, a variable improtance index was built based on Lambert-Beer law and an iterative forward process was performed. Finally, in third paper was used clustering of variables and variable importance index to select the variables that produce more consistent prediction models. In all papers of this thesis, when conpared to other traditional methods, our proposition obtained better results.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectSeleção de variáveispt_BR
dc.subjectVariable selectionen
dc.subjectClassificationen
dc.subjectControle de qualidadept_BR
dc.subjectPredictionen
dc.subjectRefiefFen
dc.subjectVariable importance indexen
dc.subjectClustering of variableen
dc.subjectNIRen
dc.titleAbordagens multivariadas para seleção de variáveis com vistas à classificação e predição de propriedades de amostraspt_BR
dc.typeTesept_BR
dc.identifier.nrb001126653pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.programPrograma de Pós-Graduação em Engenharia de Produção e Transportespt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2021pt_BR
dc.degree.leveldoutoradopt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem