Mostrar registro simples

dc.contributor.authorRasia Filho, Alberto Antoniopt_BR
dc.contributor.authorGuerra, Kétlyn Talise Knakpt_BR
dc.contributor.authorVásquez, Carlos Escobarpt_BR
dc.contributor.authorDall'Oglio, Alinept_BR
dc.contributor.authorReberger, Romanpt_BR
dc.contributor.authorJung, Claudio Rositopt_BR
dc.contributor.authorCalcagnotto, Maria Elisapt_BR
dc.date.accessioned2021-06-02T04:33:35Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.issn1663-3563pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/221814pt_BR
dc.description.abstractHuman cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70–85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as “pyramidal-like” neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. “Pyramidal-like” to “classic” pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, “atypical” or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer’s disease and in temporal lobe epilepsy.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofFrontiers in synaptic neuroscience. Lausanne. Vol. 13 (Mar. 2021), 616607, 35 p.pt_BR
dc.rightsOpen Accessen
dc.subjectAmygdaloid complexen
dc.subjectNeocórtexpt_BR
dc.subjectHippocampusen
dc.subjectCélulas piramidaispt_BR
dc.subjectCerebral cortexen
dc.subjectHuman dendritic spinesen
dc.subject3D reconstructionen
dc.subjectAlzheimer’s diseaseen
dc.subjectTemporal lobe epilepsyen
dc.titleThe subcortical-allocortical-neocortical continuum for the emergence and morphological heterogeneity of pyramidal neurons in the human brainpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001125720pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples