Obliquely propagating electromagnetic waves in magnetized kappa plasmas
Visualizar/abrir
Data
2016Tipo
Abstract
Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treat ...
Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfv en waves resulting from a kappa VDF. In the present work, the formalism is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions such as the bi-kappa or product-bi-kappa. VC 2016 AIP Publishing LLC. ...
Contido em
Physics of plasmas. Melville. Vol. 23, no. 2 (Feb. 2016), 022110, 18 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (41542)Ciências Exatas e da Terra (6257)
Este item está licenciado na Creative Commons License