Show simple item record

dc.contributor.advisorFogliatto, Flavio Sansonpt_BR
dc.contributor.advisorSilveira, Giovani Jose Caetano dapt_BR
dc.contributor.authorLucini, Filipe Rissieript_BR
dc.date.accessioned2018-12-01T03:13:28Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/185810pt_BR
dc.description.abstractA presente tese apresenta proposições para o desenvolvimento e aplicação de técnicas de mineração de textos, de modo a contribuir para a gestão de operações nas áreas médicas e de negócios. Os objetivos desta tese são: (i) identificar e estruturar técnicas de mineração de texto, de modo a elaborar um método para prever internações de pacientes provenientes de emergências hospitalares, tendo como base somente os registros textuais não estruturados escritos por médicos durante o primeiro encontro médico-paciente; (ii) comparar previsões realizadas pelo método proposto no objetivo (i) com análises médicas realizadas por humanos, de modo a verificar se computadores podem atuar de forma autônoma na tarefa de previsão de internações de pacientes provenientes de emergências hospitalares; e (iii) identificar e estruturar técnicas de mineração de texto, de modo a elaborar um método para prever a satisfação de clientes de companhias aéreas, tendo como base as avaliações escritas e publicadas por passageiros na internet. Os métodos propostos utilizaram diferentes técnicas de mineração de textos, sendo validados por estudos de caso. Em relação à área médica, o método proposto pode realizar previsões em tempo real sobre a necessidade de leitos, ajudando as equipes de gerenciamento de leitos a melhorar os processos de fluxo de pacientes. Além disso, verificou-se que tanto médicos (iniciantes ou experientes), quanto máquina, tiveram desempenhos semelhantes na tarefa de previsão de internação de pacientes. Já em relação à área de negócios, o método proposto permitiu extrair dimensões de satisfação de avaliações online, além dos sentimentos associados a elas, considerando diferentes perfis de passageiros, serviços e períodos de tempo. Desta forma, foi possível prever a recomendação de companhias aéreas baseado nas avaliações escritas por passageiros.pt_BR
dc.description.abstractThis dissertation presents propositions for the development and application of text mining techniques, in order to contribute to operations management in the medical and business areas. The objectives of this dissertation are: (i) identify and structure text mining techniques, in order to propose a method to predict admissions of patients from hospital emergencies, based only on unstructured textual records written by physicians during the first encounter with patients; (ii) compare predictions made by the method proposed in objective (i) with medical analyses carried out by humans, in order to verify if computers can work autonomously in predicting hospitalizations of patients coming from hospital emergencies; and (iii) identify and structure text mining techniques to develop a method for predicting airline customer satisfaction based on online customer reviews. The proposed methods used different text mining techniques, being validated by case studies. Regarding the medical area, the proposed method was able to perform real-time forecasts about the need for beds, helping bed management teams to improve patient flow processes. In addition, it was found that both physicians (novice or experienced) and machine had similar performances in predicting patient hospitalization. In relation to the business area, the proposed method allowed to extract satisfaction dimensions of online customer reviews, as well as sentiments associated to them, considering different profiles of passengers, services and time periods. It also enabled the prediction of airline recommendation based on online customer reviews.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectText miningen
dc.subjectMineração de textopt_BR
dc.subjectAirline industryen
dc.subjectTomada de decisãopt_BR
dc.subjectInternação hospitalarpt_BR
dc.subjectHospital emergency departmenten
dc.subjectTransporte aéreopt_BR
dc.subjectDecision supporten
dc.subjectOperations managementen
dc.titleAplicações de mineração de textos na gestão de operaçõespt_BR
dc.title.alternativeApplications of Text Mining Techniques in Operations Management en
dc.typeTesept_BR
dc.identifier.nrb001074290pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentEscola de Engenhariapt_BR
dc.degree.programPrograma de Pós-Graduação em Engenharia de Produçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2018pt_BR
dc.degree.leveldoutoradopt_BR


Files in this item

Thumbnail
   

This item is licensed under a Creative Commons License

Show simple item record