Síntese de nanopartículas de ouro em solução aquosa, transferência para outros solventes orgânicos e avaliação de sua estabilidade em diferentes meios orgânicos
Fecha
2018Tutor
Nivel académico
Maestría
Tipo
Materia
Resumo
O objetivo deste estudo foi sintetizar nanopartículas de ouro (AuNPs) em meio aquoso, transferí-las para diferentes meios orgânicos, e avaliar sua estabilidade (não-agregação) nesses meios, com o intuito de otimizar a exploração de suas propriedades ópticas. Foi utilizado o ácido tetracloroáurico (HAuCl4) como precursor de ouro metálico em meio aquoso e fez-se a transferência para clorofórmio (CHCl3) e diclorometano (CH2Cl2). Como agente de transferência, utilizou-se o polietilenoglicol tiolado ...
O objetivo deste estudo foi sintetizar nanopartículas de ouro (AuNPs) em meio aquoso, transferí-las para diferentes meios orgânicos, e avaliar sua estabilidade (não-agregação) nesses meios, com o intuito de otimizar a exploração de suas propriedades ópticas. Foi utilizado o ácido tetracloroáurico (HAuCl4) como precursor de ouro metálico em meio aquoso e fez-se a transferência para clorofórmio (CHCl3) e diclorometano (CH2Cl2). Como agente de transferência, utilizou-se o polietilenoglicol tiolado (PEGSH) junto com o dodecanotiol (DDT). O PEG-SH foi adicionado na fase aquosa para evitar a agregação das AuNPs, assim como em fase orgânica, o DDT foi adicionado como agente estabilizador, pois sua cadeia alifática promove interações hidrofóbicas entre as partículas. Avaliou-se dois diâmetros médios de nanopartículas. A eficiência de transferência e a distribuição de tamanho das AuNPs foram estudadas utilizando a espectroscopia UV-Vis, espalhamento dinâmica de luz e microscopia eletrônica de transmissão. As nanopartículas denominadas AuNPs1 apresentaram AbsRPLS média de 0,8314 em ʎmédio = 521 nm e as AuNPs2 AbsRPLS média de 1,2643 em ʎmédio = 526 nm. Quando as AuNPs foram transferidas para solventes orgânicos, os espectros de absorção obtidos por UV-Vis apresentaram deslocamento da banda RPLS para o vermelho, em CHCl3, ʎAuNPs1 = 531 nm e ʎAuNPs2 = 534 nm; em CH2Cl2, ambas as soluções apresentaram ʎ = 530 nm. Este deslocamento é um dos fatores que indicaram a não-agregação das AuNPs. Em DLS, foi confirmada a nãoagregação. Em CHCl3, as AuNPs1 apresentaram eficiência de transferência de 97,27% e as AuNPs 98,88%, enquanto, em diclorometano, apenas 80,21% das AuNPs foram transferidas. As AuNPs apresentaram ao longo do tempo maior estabilidade em CHCl3 do que em CH2Cl2. Após a transferência para o CHCl3, as AuNPs foram separadas deste solvente e redissolvidas em outros solventes orgânicos com diferentes índices de refração: álcool benzílico, etanol e dimetilsulfóxido (DMSO). As AuNPS permaneceram visivelmente estáveis somente em álcool benzílico, pois nos outros solventes foi observado que a solução coloidal apresentou perda da coloração e por UV-Vis foi verificada a diminuição da banda da RPLS em DMSO e a ausência em etanol. ...
Abstract
The objective of this study was to synthesize gold nanoparticles (AuNPs) in aqueous media, transfer them to different organic media, and evaluate their stability (non-aggregation) in these media, in order to optimize the exploration of their optical properties. Tetrachlorouric acid was used as the gold precursor in aqueous medium and transferred to chloroform (CHCl3) and dichloromethane (CH2Cl2). As the transfer agent, thiolated polyethylene glycol (PEG-SH) was used along with dodecanethiol (DD ...
The objective of this study was to synthesize gold nanoparticles (AuNPs) in aqueous media, transfer them to different organic media, and evaluate their stability (non-aggregation) in these media, in order to optimize the exploration of their optical properties. Tetrachlorouric acid was used as the gold precursor in aqueous medium and transferred to chloroform (CHCl3) and dichloromethane (CH2Cl2). As the transfer agent, thiolated polyethylene glycol (PEG-SH) was used along with dodecanethiol (DDT). PEG-SH was added in the aqueous phase to prevent AuNPs from aggregating, as well as in the organic phase, DDT was added as a stabilizing agent because its aliphatic chain promotes hydrophobic interactions between the particles. Two average nanoparticle diameters were evaluated. The transfer efficiency and size distribution of the AuNPs were studied using UV-Vis spectroscopy, dynamic light scattering and transmission electron microscopy. The nanoparticles named AuNPs1 presented mean AbsRPLS of 0,8314 in ʎmedium = 521 nm and the AuNPs2 AbsLSPR mean of 1,2643 in ʎmedium = 526 nm. When the AuNPs were transferred to organic solvents, the absorption spectra obtained by UV-Vis showed red band shift in CHCl3, ʎAuNPs1 = 531 nm and ʎAuNPs2 = 534 nm; in CH2Cl2, both solutions showed ʎ = 530 nm. This displacement is one of the factors that indicated the non-aggregation of AuNPs. In DLS, non-aggregation was confirmed. In CHCl3, AuNPs1 showed transfer efficiency of 97,27% and AuNPs 98.88%, while in dichloromethane only 80,21% of AuNPs were transferred. AuNPs showed greater stability over time in CHCl3 than in CH2Cl2. After transfer to CHCl3, the AuNPs were separated from this solvent and redissolved in other organic solvents with different refractive indexes: benzyl alcohol, ethanol and dimethylsulfoxide (DMSO). The AuNPS remained visibly stable only in benzyl alcohol, because in the other solvents it was observed that the colloidal solution showed a loss of coloration and, by UV-Vis, the reduction of the LSPR band in DMSO and absence in ethanol was verified. ...
Institución
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais.
Colecciones
-
Ingeniería (7410)
Este ítem está licenciado en la Creative Commons License