Voltage scaling interfaces for multi-voltage digital systems
Fecha
2015Co-director
Nivel académico
Maestría
Tipo
Otro título
Interfaces de escalonamento de tensão para sistemas digitais de multiplas tensões
Materia
Abstract
Multiple Voltage Digital Systems exploit the concept of voltage scaling by applying different supplies to particular regions of the chip. Each of those regions belongs to a power domain and may have two or more supply voltage configurations. Regardless of distinct energy levels on different power domains, the blocks shall process signals with coherent logic levels. In these systems, the Level Shifters (LS) are essential components that act as voltage scaling interfaces between power domains, gu ...
Multiple Voltage Digital Systems exploit the concept of voltage scaling by applying different supplies to particular regions of the chip. Each of those regions belongs to a power domain and may have two or more supply voltage configurations. Regardless of distinct energy levels on different power domains, the blocks shall process signals with coherent logic levels. In these systems, the Level Shifters (LS) are essential components that act as voltage scaling interfaces between power domains, guaranteeing the correct signal transmission. With the appropriate voltage scaling interface and its proper implementation, we can avoid excessive static and dynamic power consumption. Therefore, the design and implementation of level shifters should be a conscientious process and must guarantee the lowest overhead in size, energy consumption, and delay time. In this work, we study the main characteristics of voltage scaling interfaces and introduce an energy-efficient level shifter with reduced area, and suitable for low-to-high level conversion. We present the level shifters with the best performance that we found in the literature and categorize them into two main groups: Dual-rail and Single-rail, according to the number of power rails required. The proposed circuit was compared to the traditional topology of each group, Differential Cascode Voltage Switch (DCVS) and Puri’s level shifter respectively. Simulations on an IBMTM 130nm CMOS technology show that the proposed topology requires up to 93.79% less energy under certain conditions. It presented 88.03% smaller delay and 39.6% less Power-Delay Product (PDP) when compared to the DCVS topology. In contrast with the Puri’s level shifter, we obtained a reduction of 32.08% in power consumption, 13.26% smaller delay and 15.37% lower PDP. Besides, our level shifter was the only one capable of working at 35% of the nominal supply voltage. ...
Resumo
Os Sistemas Digitais de Múltiplas Tensões exploram o conceito de dimensionamento da tensão de alimentação através da aplicação de diferentes fontes para regiões específicas do chip. Cada uma destas regiões pertence a um domínio de energia e pode ter duas ou mais configurações de voltagens. Independentemente dos distintos níveis de energia em diferentes domínios de tensão, os blocos devem processar sinais com níveis lógicos coerentes. Nestes sistemas, os Conversores de Nível (LS do inglês Level ...
Os Sistemas Digitais de Múltiplas Tensões exploram o conceito de dimensionamento da tensão de alimentação através da aplicação de diferentes fontes para regiões específicas do chip. Cada uma destas regiões pertence a um domínio de energia e pode ter duas ou mais configurações de voltagens. Independentemente dos distintos níveis de energia em diferentes domínios de tensão, os blocos devem processar sinais com níveis lógicos coerentes. Nestes sistemas, os Conversores de Nível (LS do inglês Level Shifters) são componentes essenciais que atuam como interfaces de escalonamento da tensão entre domínios de energia, garantindo a correta transmissão dos sinais. Com a apropriada interface de escalonamento de tensão e sua correta implementação, pode-se evitar o consumo excessivo de potência dinâmica e estática. Portanto, a concepção e implementação de conversores de nível deve ser um processo consciente que garanta o menor sobrecusto no tamanho, consumo de energia, e tempo de atraso. Neste trabalho estudam-se as principais características das interfaces de escalonamento de tensão e se introduce um conversor de tensão com eficiência energética e área reduzida, adequado para a conversão de baixo a alto nível. Apresentam-se os conversores de nível com o melhor desempenho encontrados na literatura, os quais são categorizados em dois principais grupos: Dois trilhos (Dual-rail) e Único trilho (Single-rail), de acordo ao número de linhas de alimentação necessárias. O circuito proposto foi comparado com a topologia tradicional de cada grupo, o Differential Cascode Voltage Switch (DCVS) e o conversor de Puri respectivamente. Simulações na tecnologia CMOS 130nm da IBMTM mostram que a topologia proposta requer até 93,79% menos energia em determinadas condições. Esta apresentou 88,03% menor atraso e uma redução de 39,6% no Produto Potência-Atraso (PDP), quando comparada com a topologia DCVS. Em contraste com o conversor Puri, obteve-se uma redução de 32,08% no consumo de energia, 13,26% diminuição no atraso e 15,37% inferior PDP. Além disso, o conversor de nível proposto foi o único capaz de trabalhar a 35% da tensão nominal de alimentação. ...
Institución
Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa de Pós-Graduação em Microeletrônica.
Colecciones
-
Ingeniería (7440)Microelectrónica (210)
Este ítem está licenciado en la Creative Commons License