Modelagem de sistemas de áudio não lineares a partir do método da varredura senoidal
Fecha
2016Tutor
Nivel académico
Grado
Tipo
Resumo
O atual desenvolvimento da tecnologia nos permite realizar medições de forma relativamente simples e acessível em sistemas de áudio, através de interfaces de áudio e computadores com alto poder de processamento. Sistemas de áudio são conhecidos em todo o mundo por gerar não linearidades que geralmente agradam nossos ouvidos, fazem o som parecer mais encorpado e de certa forma mais "vivo". O objetivo deste trabalho é justamente analisar, identificar e modelar essas não linearidades a partir do m ...
O atual desenvolvimento da tecnologia nos permite realizar medições de forma relativamente simples e acessível em sistemas de áudio, através de interfaces de áudio e computadores com alto poder de processamento. Sistemas de áudio são conhecidos em todo o mundo por gerar não linearidades que geralmente agradam nossos ouvidos, fazem o som parecer mais encorpado e de certa forma mais "vivo". O objetivo deste trabalho é justamente analisar, identificar e modelar essas não linearidades a partir do método da varredura senoidal exponencial. O sinal de excitação que dá nome ao método é utilizado para fazer uma varredura em frequência no sistema analisado. A resposta do sistema é salva e então processada para obtermos os parâmetros que compõe o modelo utilizado. Para a representação do sistema não linear utilizamos o modelo polinomial generalizado de Hammerstein. Neste trabalho estudamos o método proposto com o intuito de implementá-lo e através de dois experimentos validar seus resultados. O primeiro experimento consiste em modelar um sistema simulado no computador e portanto já conhecido. O segundo experimento compreende na identificação e modelagem de um dispositivo de áudio não linear real, um pedal de efeito de distorção para guitarra, o SD-1 da Roland BOSS. Os resultados se mostraram extremamente satisfatórios. Como critério de validação estimamos o erro médio quadrático relativo (EMQ), comparando a resposta do modelo gerado pelo método com a resposta do sistema analisado, quando os dois sistemas são excitados pelo mesmo sinal. Para o primeiro experimento encontramos o valor de 0;1319% para o EMQ analisando a resposta temporal dos sistemas. No segundo experimento, envolvendo o sistema real, obtivemos o valor de 0;0014% para o EMQ analisando também as respostas dos sistemas no tempo. ...
Abstract
The current development of technology allows us to perform relatively simple and accessible measurements on audio systems, through audio interfaces and with high processing power computers. Audio systems are known all over the world for generating nonlinearities that usually please our ears, make the sound appear more full-bodied and somewhat more "alive." The objective of this work is to analyze, identify and model these nonlinearities from the exponential sinusoidal sweep method. The excitati ...
The current development of technology allows us to perform relatively simple and accessible measurements on audio systems, through audio interfaces and with high processing power computers. Audio systems are known all over the world for generating nonlinearities that usually please our ears, make the sound appear more full-bodied and somewhat more "alive." The objective of this work is to analyze, identify and model these nonlinearities from the exponential sinusoidal sweep method. The excitation signal that gives name to the method is used to make a frequency scan in the analyzed system. The system response is saved and then processed to obtain the parameters that make up the model used. For the representation of the nonlinear system we use Hammerstein’s generalized polynomial model. In this work we study the proposed method with the intention of implementing it and validating its results through two experiments. The first experiment consists in modeling a simulated system in the computer and therefore already known. The second experiment involves the identification and modeling of a real non-linear audio device, a distortion pedal for guitar, SD-1 from Roland BOSS. The results were extremely satisfactory. As a validation criterion we estimate the relative mean square error (EMQ), comparing the model response generated by the method with the analyzed system response, when the two systems are excited by the same signal. For the first experiment we find the value of 0:1319% for the EMQ by analyzing the time response of the systems. In the second experiment, involving the real system, we obtained the value of 0:0014% for the EMQ, also analyzing the responses of the systems in time. ...
Institución
Universidade Federal do Rio Grande do Sul. Escola de Engenharia. Curso de Engenharia Elétrica.
Colecciones
-
Tesinas de Curso de Grado (37361)Tesinas Ingenierías (5855)
Este ítem está licenciado en la Creative Commons License