Mostrar registro simples

dc.contributor.authorCastro, Patricia Alves dept_BR
dc.contributor.authorSavoldi, Marcelapt_BR
dc.contributor.authorBonatto, Diegopt_BR
dc.contributor.authorMalavazi, Iranpt_BR
dc.contributor.authorGoldman, Maria Helena S.pt_BR
dc.contributor.authorBeretta, Andresa A.pt_BR
dc.contributor.authorGoldman, Gustavo Henriquept_BR
dc.date.accessioned2015-02-12T02:15:52Zpt_BR
dc.date.issued2012pt_BR
dc.identifier.issn1472-6882pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/110068pt_BR
dc.description.abstractBackground: Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods: We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results: We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions: In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most prominent pathways are related to oxidative stress, mitochondrial electron transport chain, vacuolar acidification, regulation of macroautophagy associated with protein target to vacuole, cellular response to starvation, and negative regulation of transcription from RNA polymerase II promoter. Our work emphasizes again the importance of S. cerevisiae as a model system to understand at molecular level the mechanism whereby propolis causes cell death in this organism at the concentration herein tested. Our study is the first one that investigates systematically by using functional genomics how propolis influences and modulates the mRNA abundance of an organism and may stimulate further work on the propolis-mediated cell death mechanisms in fungi.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofBMC Complementary and Alternative Medicine. London. Vol. 12, (Oct. 2012), e194 , 29 p.pt_BR
dc.rightsOpen Accessen
dc.subjectSaccharomyces cerevisiaept_BR
dc.subjectPropolispt_BR
dc.subjectHibridizaçãopt_BR
dc.titleTranscriptional profiling of Saccharomyces cerevisiae exposed to propolispt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000869340pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples