Rotatable anisotropy driven training effects in exchange biased Co/CoO films
Visualizar/abrir
Data
2014Autor
Tipo
Assunto
Abstract
The training effect for exchange bias in field-cooled Co/CoO bilayers films is investigated. Previous experiments on the same system have shown that, starting from the ascending branch of the first hysteresis loop, coherent magnetization rotation is the dominant reversal mechanism. This is confirmed by the performed numerical simulations, which also indicate that the training is predominantly caused by changes of the rotatable anisotropy parameters of uncompensated spins at the Co/CoO interface ...
The training effect for exchange bias in field-cooled Co/CoO bilayers films is investigated. Previous experiments on the same system have shown that, starting from the ascending branch of the first hysteresis loop, coherent magnetization rotation is the dominant reversal mechanism. This is confirmed by the performed numerical simulations, which also indicate that the training is predominantly caused by changes of the rotatable anisotropy parameters of uncompensated spins at the Co/CoO interface. Moreover, in contrast with what is commonly assumed, the exchange coupling between the rotatable spins and the ferromagnetic layer is stronger than the coupling between the ferromagnet and the spins responsible for the bias. Thus, uncompensated spins strongly coupled to the ferromagnet contribute to the coercivity rather than to the bias, whatever the strength of their magnetic anisotropy. ...
Contido em
Journal of applied physics. New York. Vol. 115, no. 24 (June 2014), 243903, 6 p.
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (40281)Ciências Exatas e da Terra (6158)
Este item está licenciado na Creative Commons License