Mostrar registro simples

dc.contributor.authorGirotti, Horacio Oscarpt_BR
dc.contributor.authorGomes, Marcelopt_BR
dc.contributor.authorRivelles, Victor O.pt_BR
dc.contributor.authorSilva, Adilson J. dapt_BR
dc.date.accessioned2014-09-24T02:12:06Zpt_BR
dc.date.issued1997pt_BR
dc.identifier.issn0556-2821pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/103704pt_BR
dc.description.abstractThe continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3]en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. D, Particles and fields. Woodbury. Vol. 56, no. 10 (Nov. 1997), p. 6615-6618pt_BR
dc.rightsOpen Accessen
dc.subjectFisica de particulas elementares e campospt_BR
dc.subjectTeoria de cordaspt_BR
dc.subjectSimetrias : Teoria quanticapt_BR
dc.subjectSimetriaspt_BR
dc.titleDuality symmetry in the schwarz-sen modelpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000152450pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples