Duality symmetry in the schwarz-sen model
dc.contributor.author | Girotti, Horacio Oscar | pt_BR |
dc.contributor.author | Gomes, Marcelo | pt_BR |
dc.contributor.author | Rivelles, Victor O. | pt_BR |
dc.contributor.author | Silva, Adilson J. da | pt_BR |
dc.date.accessioned | 2014-09-24T02:12:06Z | pt_BR |
dc.date.issued | 1997 | pt_BR |
dc.identifier.issn | 0556-2821 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/103704 | pt_BR |
dc.description.abstract | The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator Q turns out to be local, gauge invariant, and metric independent. Furthermore, Q commutes with all the conformal group generators. We also show that Q is equivalent to the nonlocal duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin-Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation leads us to the Schwarz-Sen formulation. The partition functions are shown to be the same, which implies the quantum equivalence of the two approaches. [S0556-2821(97)06522-3] | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Physical review. D, Particles and fields. Woodbury. Vol. 56, no. 10 (Nov. 1997), p. 6615-6618 | pt_BR |
dc.rights | Open Access | en |
dc.subject | Fisica de particulas elementares e campos | pt_BR |
dc.subject | Teoria de cordas | pt_BR |
dc.subject | Simetrias : Teoria quantica | pt_BR |
dc.subject | Simetrias | pt_BR |
dc.title | Duality symmetry in the schwarz-sen model | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 000152450 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (40304)Ciências Exatas e da Terra (6158)