Mostrar registro simples

dc.contributor.advisorGalante, Renata de Matospt_BR
dc.contributor.authorCagliari, Bruna Casagrandapt_BR
dc.date.accessioned2025-12-19T16:51:40Zpt_BR
dc.date.issued2024pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/300001pt_BR
dc.description.abstractThe explosion of data resulting from the exponential growth in the use of digital platforms has generated an urgent demand for efficient solutions to deal with massive volumes of data. Among the new tools that emerged to overcome new challenges, Cassandra and PostgreSQL quickly became popular. However, traditional solutions have become unsatisfactory over time, leading to the search for optimizations that meet the current requirements. Data partitioning emerged as a way to increase the potential for scalability, fault tolerance, and processing speed. This work proposes to explore the partitioning techniques available in PostgreSQL in a cloud environment in order to provide valuable information to optimize data processing performance. A comparison with Cassandra is also provided, duo to its partitioned architecture.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.rightsOpen Accessen
dc.subjectPostgreSQLpt_BR
dc.subjectCassandraen
dc.subjectParticionamentopt_BR
dc.subjectProcessamento de dadospt_BR
dc.subjectBanco de dadospt_BR
dc.titleOptimizing PostgreSQL performance : an in-depth analysis of partitioning impactpt_BR
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb001197782pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2024pt_BR
dc.degree.graduationCiência da Computação: Ênfase em Engenharia da Computação: Bachareladopt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples